Walk Audit Report

PUEBLO VISTA MAGNET ELEMENTARY SCHOOL

Safe Routes
Napa County
PUEBLO VISTA MAGNET ELEMENTARY SCHOOL
1600 BARBARA ROAD
NAPA, CA

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM
SCHOOL OFFICIALS
WALK AUDIT PARTICIPANTS
CITY STAFF
REPORT DESIGN

EXECUTIVE SUMMARY
THE NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM
WHY SAFE ROUTES TO SCHOOL?
THE SIX E’S
REPORT PROCESS

PUEBLO VISTA MAGNET ELEMENTARY SCHOOL
SCHOOL SUMMARY
DATA
NEIGHBORHOOD CONTEXT

EXISTING CONDITIONS
SITE CIRCULATION
BICYCLE AND PEDESTRIAN INFRASTRUCTURE
Map of Existing Bicycle Facilities
Map of Existing Pedestrian Facilities
ENCOURAGEMENT AND EDUCATION PROGRAMS

EXISTING PLANS
NVUSD Facilities Master Plan (2016)
NVTA Napa Countywide Bicycle Plan (2019)
NVTA Napa Countywide Pedestrian Plan (2016)
NVTA Napa Valley Countywide Transportation Plan: Advancing Mobility 2045 (2021)
City of Napa General Plan 2020 (1998) / 2040 (Not Yet Adopted)

WALK AUDIT
METHODOLOGY
WALK AUDIT FINDINGS

RECOMMENDATIONS
CONTEXT FOR RECOMMENDATIONS
MAP OF RECOMMENDATIONS
TABLE OF RECOMMENDATIONS
COLLISION MAP AND DATA

APPENDICES

FIGURES & MAPS REFERENCE

FOOTNOTES

ACKNOWLEDGEMENTS

NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM

Napa County Bicycle Coalition
Madeline Oliver, Program Coordinator
Carlotta Sainato, Program Coordinator
Patrick Band, Executive Director
Kara Vernor, Executive Director

Napa County Office of Education
Grant Dimsdale, Community Programs Site Coordinator, Safe Routes to School
Willow Williams, Community Programs Outreach Coordinator
Christine Wedding, Community Programs Manager
Sara Sitch, Community Programs Director

Napa Valley Transportation Authority
Diana Meehan, Senior Planner

SCHOOL OFFICIALS
Napa Valley Unified School District
Dr. Rosanna Muccetti, Superintendent
Helen Rocca, Principal

CITY STAFF
City of Napa Public Works Department
City of Napa Community Development Department
City of Napa Fire Department
City of Napa Police Department
Napa County Public Works
Napa County Sheriff’s Department
Napa County Planning Department – Roads Division
Napa County Fire Department

WALK AUDIT PARTICIPANTS
Patrick Band, Napa County Safe Routes to School Program
Carlotta Sainato, Napa County Safe Routes to School Program

REPORT DESIGN
Ana Rizzo, Graphic Design
Amber Manfree, GIS Mapping
EXECUTIVE SUMMARY

THE NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM

The Napa County Safe Routes to School (SRTS) Program is a partnership between the Napa County Office of Education (NCOE), Napa County Bicycle Coalition (NCBC) and Napa Valley Transportation Authority (NVTA). Since 2005, the Program has provided high-quality bicycle and pedestrian safety education and encouragement programs and has worked closely with the public agency and school stakeholders to make walking and bicycling safer and more accessible for children throughout Napa County.

According to 2015 California Office of Traffic Safety (OTS) data, the data available when the SRTS program was applying for grant funding, Napa County ranked 1st in per capita number of collisions of bicyclists under the age 15, 2nd in total fatal and injury-causing collisions, and 3rd in overall pedestrian collisions. According to the most recent OTS data (2018), Napa County ranked 8th for bicyclist collisions statewide (58 counties), 7th for speed-related collisions, and 6th for total fatal and injury-causing collisions. A decades-long decline in the number of students walking and biking to school, as well as increased awareness of the significant traffic congestion, air pollution, and related issues associated with students being driven to school galvanized local agency partners to expand the existing program.

The Napa County Safe Routes to School (SRTS) Program is a partnership between the Napa County Office of Education (NCOE), Napa County Bicycle Coalition (NCBC) and Napa Valley Transportation Authority (NVTA). Since 2008, the Program has provided high-quality bicycle and pedestrian safety education and encouragement programs and initiate a series of evaluations at each public school countywide. NCOE has been leading education and engagement programs under the current program, while NCBC has led evaluations of active transportation barriers at all 36 school sites.

WHY SAFE ROUTES TO SCHOOL?

Safe Routes to School is national initiative committed to increasing the number of students who walk or bike to school, and making it safe, convenient, and fun for kids to do so. In doing so, SRTS aims to improve kids’ safety and increase health and physical activity. Concerned by the declining number of students walking and biking to school over recent decades and the related long-term health and traffic consequences, Congress made federal funding available for SRTS programs nationwide in 2005. Since then, SRTS programs have been implemented at more than 14,000 schools in all 50 states.

Studies have linked SRTS programs to increased walking and biking to school and reduced pedestrian collisions. This can lead to safer, healthier, and more focused students, while also benefitting local and school communities.

Regularly walking or biking increases children’s daily levels of physical fitness and improves their cardiovascular health.

Student health has been linked to improved academic performance. When students walk or bike to school, the fresh air and exercise allow them to arrive refreshed, energized and ready to focus. Children have a greater sense of spatial awareness and knowledge when they are actively engaged in their transportation, allowing them to better recognize and navigate their neighborhoods independently. Families are also provided with a low-cost transportation option that can significantly reduce their annual expenses.

When a greater share of students walk or bike to school, local and school communities benefit too. Fewer cars being driven to school can improve the air quality of surrounding neighborhoods by decreasing air pollutant emissions and decrease street safety through reduced traffic congestion and noise pollution. This can also improve campus safety and reduce circulation hazards around the school site. Walking or biking is a reliable form of transportation, which can reduce student absence and tardiness. By reducing the number of short-distance school bus trips, increased student walking and biking can also help school districts save funds by decreasing costly bus service.

Schools and the community benefit immensely when students choose to walk or bike.

Student health has been linked to improved academic performance.

Walking or biking can provide a reliable form of transportation, leading to reduced student absence and tardiness.

Children arrive ready to learn and are less likely to experience discipline issues.

Fewer cars dropping off and picking up students improves campus safety and reduces circulation hazards.

THE SIX E’S

Safe Routes to School programs originally followed a comprehensive approach that addressed the “Five E’s” – education, encouragement, enforcement, evaluation, and engineering. In 2017, when the Napa County SRTS program obtained funding to perform Walk Audit evaluations, the “Five E’s” had recently been altered to add a sixth “E” – equity. In June 2020, after a significant portion of the Walk Audit evaluation work had been completed, the “Six E’s” framework was again altered, dropping enforcement and adding engagement. These changes were led by the Safe Routes to School National Partnership.

The current “Six E’s” framework is described below. Although enforcement is no longer one of the “Six E’s”, a brief definition of enforcement is included, as it was part of the approach used by the Napa County SRTS program during the majority of the Walk Audit evaluation process. Enforcement statistics are not emphasized in this report, as this element needs more study and review.

The goal of the Walk Audit Report is to identify, evaluate, prioritize, and offer solutions to infrastructure and non-infrastructure barriers to students safely walking and biking to school in Napa County.

The current “Six E’s” framework is described below. Although enforcement is no longer one of the “Six E’s”, a brief definition of enforcement is included, as it was part of the approach used by the Napa County SRTS program during the majority of the Walk Audit evaluation process. Enforcement statistics are not emphasized in this report, as this element needs more study and review.

THE SIX E’S

- **Engagement**
 - Listen to community members and work with existing community organizations.

- **Equity**
 - Recognize the unique barriers that different people face in living healthy, fulfilled lives, and craft policies, programs, and overall approaches with those various challenges and needs in mind.

- **Engineering**
 - Design streets and schools for walkers and bikers to use safely and conveniently.

- **Encouragement**
 - Promote walking and biking in the school community through events, programs and incentives.

- **Education**
 - Ensure that everyone learns how to travel safely and why biking and walking are important.

- **Evaluation**
 - Track progress toward our shared safety goals, develop programs accordingly.

Enforcement (no longer an “E”):

- Enforce traffic safety laws and school policies and target risky behaviors. No longer recommended as foundational to the start, maintenance, or growth of Safe Routes to School programs.
The SRTS team conducted a comprehensive evaluation of the barriers to students walking and biking to and from Pueblo Vista Magnet Elementary School, starting in the summer of 2018. Information on physical and behavioral challenges was collected in two phases. In August 2018, the SRTS team completed an initial infrastructure audit of the school site and the surrounding neighborhood within a half-mile of the school. SRTS team members walked and rode bicycles throughout the school neighborhood, taking photographs of barriers and logging them into Fulcrum, a GPS-enabled data collection smartphone app.

The next step in the process was to plan a community Walk Audit and collect initial information about circulation at the campus. Normally, a community Walk Audit would have brought parents, staff, and community members together to discuss school conditions and behaviors during pick-up and drop-off times, identify safety and convenience barriers for students walking and biking to school, prioritize issues, and brainstorm solutions. However, the rise of the Covid-19 pandemic and subsequent quarantine in March 2020 prevented the SRTS team from performing a community Walk Audit. In March 2021, SRTS team members performed a modified Walk Audit at Pueblo Vista Magnet Elementary School. The two phases resulted in an inventory of infrastructural barriers at and around the school site.

A report draft was shared with the Napa Valley Transportation Authority, the Napa County Office of Education, public works and planning representatives from the City of Napa and the County of Napa, the local school district, law enforcement, and school stakeholders, and their feedback was incorporated into the final version. As part of the larger countywide project, the SRTS team engaged EMC Research, a national public opinion research firm to conduct a comprehensive survey of parents’ perceptions around walking and biking to school (see Appendix A). The Walk Audit report outlines the information gathered during this multi-year process and provides recommendations for improvements.
A hand tally survey collected by the Napa County Office of Education in Spring 2019 indicated that almost ¾ of students travel to school by family vehicle, while almost 20% walk or bike. Additional work is needed to establish a baseline of regular active transportation use for this school.

According to the results of the countywide EMC Research survey conducted in Spring 2021, 16% of respondents report that their K-8th grade children primarily walk to and/or from school and ~4% primarily bike. While nearly half (43%) say that their child has walked or biked to/from school at some point, 73% report using a single-family vehicle as the primary transportation method to and from school.

DATA

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Pueblo Vista Magnet Elementary School</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black or African American</td>
<td>0.6%</td>
<td>2.1%</td>
</tr>
<tr>
<td>Asian</td>
<td>0.2%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Filipino</td>
<td>0.2%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>72.4%</td>
<td>55.6%</td>
</tr>
<tr>
<td>White</td>
<td>24.9%</td>
<td>28.4%</td>
</tr>
<tr>
<td>Two or More Races</td>
<td>1.7%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>

Socioeconomically Disadvantaged	49.4%	51.2%
English Learners	36.0%	20.5%
Students with Disabilities	7.2%	12.5%
Homeless	N/A	1.1%

Student Enrollment by Grade Level (2019–2020)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>92</td>
</tr>
<tr>
<td>Grade 1</td>
<td>72</td>
</tr>
<tr>
<td>Grade 2</td>
<td>68</td>
</tr>
<tr>
<td>Grade 3</td>
<td>65</td>
</tr>
<tr>
<td>Grade 4</td>
<td>55</td>
</tr>
<tr>
<td>Grade 5</td>
<td>65</td>
</tr>
<tr>
<td>Total</td>
<td>417</td>
</tr>
</tbody>
</table>

NEIGHBORHOOD CONTEXT

Pueblo Vista School is located in the Pueblo Planning Area along Linda Vista Avenue. The parking lot and drop off area are accessed from Barbara Road, and cars then exit onto Linda Vista Avenue. The school is located between Kathleen Drive to the south and Ethan Porter Drive to the north. There is a small parking lot to the south of the school and large playgrounds to the north. The school is surrounded by residential neighborhoods. There is a church located to the west, across Linda Vista Avenue. The school is about halfway between Redwood Road to the north and West Pueblo Avenue to the south.

The neighborhoods around the school are low-density single family residential areas. To the southwest is a large assisted living center for senior citizens, the Rohlffs Manor Senior Apartments. There is also a church across Linda Vista Avenue from the school and a park, Sutherland Park, located about 2 blocks west of the school. The streets in the residential neighborhoods are fragmented parallel streets with some loops and lollipops. There is a path connecting the school site with Mary C Drive to the east, but the gate to the path is locked. Though the fragmented streets with loops and lollipops reduce vehicle speeds and volumes, they also reduce pedestrian route choice and interconnectivity. These roads can also concentrate traffic onto main collector and arterial roads.

Linda Vista Avenue is the main north-south arterial located west of Highway 29. Redwood Road is located about ¼ mile to the north. It is a main east-west arterial and connects to Highway 29. Many commercial districts are located along Redwood Road and Trancas Street, which Redwood Road turns into east of Highway 29. West Pueblo Avenue is located about ¼ mile south of the school and is a main east-west collector street. Both West Pueblo Avenue and Redwood Road connect with Solano Avenue to the east. Solano Avenue is a frontage road along Highway 29 and has several commercial districts.
EXISTING CONDITIONS

The Safe Routes to School Team conducted an initial evaluation of the school site and surrounding area prior to conducting the Community Walk Audit. The Fulcrum App software was used to map and record significant point and segment issues within a half-mile range of the school. The team also collected information on local and school transportation policies and programs from conversations with the school's staff and administrators, as well as documents from the school and City websites.

SITE CIRCULATION

PVMES's main entrance is at the intersection of Kathleen Drive and Barbara Road. Barbara Road dead-ends at the school's entrance and motorists can then turn left into the school's only parking lot, which exits onto Linda Vista Avenue.

PVMES's official loading zone is in a church parking lot across the street from the school's playground on Linda Vista Avenue. Motorists can enter the lot either on the north or south end of the school and exit through the opposing entrance. In addition to motorists using on-street parking on Linda Vista Avenue for pick-up and drop-off, this loading zone concentrates school-related vehicle traffic on Linda Vista Avenue. A high-visibility midblock crosswalk on Linda Vista connects the north end of the lot to the school's playground, and sidewalks line both sides of Linda Vista Avenue. The school does not have a formal circulation policy but instructs parents to use the church parking lot for pick-up and drop-off via the school website.

In addition to the Barbara Road entrance, there are three entrances to campus on Linda Vista Avenue: two lead to the back campus of the school and one follows a sidewalk along the school parking lot and leads to the school's main office. There is also a back-entrance path accessible from Mary C Drive that cuts across the school field to the playground.

Bus service through NVUSD is not available for PVMES students. However, students who live beyond 1.25 miles walking distance from school and attend their school of residence may apply for transportation through NVUSD. The Vine transit N line, operated by the Napa Valley Transportation Authority, provides service in north/central Napa, mostly along Trancas Street and Jefferson Street, and has a stop on Linda Vista Avenue next to the north driveway to the church.

BICYCLE AND PEDESTRIAN INFRASTRUCTURE

The school provides two grid-style bike racks (roughly 40 spaces) for bike parking located in front of the school's main office entrance off of Barbara Road. Recently, the bike rack has been positioned near the outside wall so that half of the parking spaces are inaccessible.

The Safe Routes to School Team conducted an initial evaluation of the school site and surrounding area prior to conducting the Community Walk Audit. The Fulcrum App software was used to map and record significant point and segment issues within a half-mile range of the school. The team also collected information on local and school transportation policies and programs from conversations with the school's staff and administrators, as well as documents from the school and City websites.

SITE CIRCULATION

PVMES's main entrance is at the intersection of Kathleen Drive and Barbara Road. Barbara Road dead-ends at the school's entrance and motorists can then turn left into the school's only parking lot, which exits onto Linda Vista Avenue.

PVMES's official loading zone is in a church parking lot across the street from the school's playground on Linda Vista Avenue. Motorists can enter the lot either on the north or south end of the school and exit through the opposing entrance. In addition to motorists using on-street parking on Linda Vista Avenue for pick-up and drop-off, this loading zone concentrates school-related vehicle traffic on Linda Vista Avenue. A high-visibility midblock crosswalk on Linda Vista connects the north end of the lot to the school's playground, and sidewalks line both sides of Linda Vista Avenue. The school does not have a formal circulation policy but instructs parents to use the church parking lot for pick-up and drop-off via the school website.

In addition to the Barbara Road entrance, there are three entrances to campus on Linda Vista Avenue: two lead to the back campus of the school and one follows a sidewalk along the school parking lot and leads to the school's main office. There is also a back-entrance path accessible from Mary C Drive that cuts across the school field to the playground.

Bus service through NVUSD is not available for PVMES students. However, students who live beyond 1.25 miles walking distance from school and attend their school of residence may apply for transportation through NVUSD. The Vine transit N line, operated by the Napa Valley Transportation Authority, provides service in north/central Napa, mostly along Trancas Street and Jefferson Street, and has a stop on Linda Vista Avenue next to the north driveway to the church.

BICYCLE AND PEDESTRIAN INFRASTRUCTURE

The school provides two grid-style bike racks (roughly 40 spaces) for bike parking located in front of the school's main office entrance off of Barbara Road. Recently, the bike rack has been positioned near the outside wall so that half of the parking spaces are inaccessible.
ENCOURAGEMENT AND EDUCATION PROGRAMS

PVMES has participated in annual countywide encouragement events such as Bike to School Day and Walk and Roll to School Day. Bike to School Day and Walk and Roll to School Day are annual encouragement events facilitated by Napa County Safe Routes to School in the spring and fall, respectively, that celebrate students making the healthy choice to walk or bike to school. The school has not expanded its encouragement program beyond these annual events.

The school has hosted a bicycle safety education class, provided by the Napa County Office of Education, to its students in 2016-17. Bicycle safety education focuses on 4th and 5th grade levels and includes between 5-10 hours of bicycle specific curriculum, spent both in the classroom and on-bike.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>EVENT</th>
<th>STUDENT PARTICIPANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016/17</td>
<td>Bike to School Day</td>
<td>64</td>
</tr>
<tr>
<td>2016/17</td>
<td>Bike Safety Education</td>
<td>120</td>
</tr>
<tr>
<td>2018/19</td>
<td>Walk and Roll to School Day</td>
<td>30</td>
</tr>
<tr>
<td>2018/19</td>
<td>Bike to School Day</td>
<td>18</td>
</tr>
<tr>
<td>2019/20</td>
<td>Walk and Roll to School Day</td>
<td>63</td>
</tr>
</tbody>
</table>

Figure 5: Encouragement and Education Data
EXISTING PLANS

NVTA Napa Countywide Bicycle Plan (2019):
The Napa Countywide Bicycle Plan recommends improving bicycle facilities around the school site. The Bicycle Plan suggests implementing a Class II bike lane along Linda Vista Avenue, which borders the west side of the campus, and a Class III urban bikeway along nearby W. Pueblo Avenue and Carol Drive.

NVUSD Facilities Master Plan (2016):
NVUSD’s Facilities Master Plan lists several projects for Pueblo Vista. These projects include installation of fencing around the school perimeter and site ADA improvements. School perimeter fencing is planned to provide a single point of entry and wayfinding signage for each elementary school in NVUSD. These projects may impact future circulation around the school.

NVUSD Facilities Master Plan (2016):
NVUSD’s Facilities Master Plan lists several projects for Pueblo Vista. These projects include installation of fencing around the school perimeter and site ADA improvements. School perimeter fencing is planned to provide a single point of entry and wayfinding signage for each elementary school in NVUSD. These projects may impact future circulation around the school.

NVTA Napa Countywide Pedestrian Plan (2016):
The Napa Countywide Pedestrian Plan lists two recommended improvements near the school site. The Linda Vista Bridge and Extension would erect a new bridge over Redwood Creek and add an extension, and the Pueblo Avenue Overpass would connect West Pueblo Avenue with Pueblo Avenue over Highway 29.

NVTA Napa Valley Countywide Transportation Plan: Advancing Mobility 2045 (2021):
The NVTA Napa Countywide Transportation Plan is a long-range plan of countywide transportation priorities that provides a direction for the four- to five-year plan while considering a 25-year planning horizon. This plan is part of the regional planning process for the Regional Transportation Plan by the Metropolitan Transportation Commission. There are 28 projects by the City of Napa listed in the Plan – only one project, the Linda Vista Avenue Bridge and Extension, is near the school area.

City of Napa General Plan 2020 (1998) / 2040 (Not Yet Adopted):
The current General Plan for the City of Napa was adopted in 1998; a General Plan update began in 2018 and at the time of this report, is still ongoing. The General Plan update strives to build a more livable, sustainable, and inclusive future for the City of Napa by outlining the City’s plan for land use, housing, transportation, climate change, and more. One of the draft guiding principles for the General Plan update is to “increase travel options through enhanced walking, bicycling, and public transportation systems, and promote mobility through increased connectivity and intelligent transportation management.”

WALK AUDIT

Date: 3/31/21
Day of the Week: Wednesday
Meeting Time: 12:00 PM
Weather: Sunny and clear

METHODOLOGY

Normally, the Community Walk Audit process would bring together school stakeholders, including parents, school staff, and community members, with the SRTS team to observe existing conditions during pick-up or drop-off time, identify barriers to safe walking or biking, and brainstorm solutions. During the observation period, participants would discuss the physical infrastructure around the school as well as the behavior of motorists, pedestrians, and bicyclists in the area, while also sharing their own experiences traveling to and from school on foot, bike, and by car. Following observation, the team would discuss their observations, map issue areas, and record and prioritize the major barriers identified during the exercise.

Due to the spread of Covid-19 in early 2020 and subsequent Shelter-in-Place mandates and social distancing guidelines, the SRTS team was unable to hold a Community Walk Audit for Pueblo Vista Magnet Elementary School. In March 2021, members of the SRTS team performed a modified Walk Audit that mirrored the initial infrastructure audit. SRTS team members rode bikes in the area immediately around the school and along significant route corridors while taking notes and photographs of infrastructure and behavioral barriers to student pedestrians and bicyclists.

Streets examined included Linda Vista Avenue from Redwood Road to Kathleen Drive; Kathleen Drive from Linda Vista Avenue to Carol Drive, and portions of Carol Drive, Sandra Drive, and Mary C Drive. Other significant streets in the school area, such as Redwood Road, were examined during Community Walk Audits for other nearby schools such as West Park Elementary School and Redwood Middle School.
RECOMMENDATIONS

Recommendations were determined by Napa County Safe Routes to School staff, taking into account the feedback and results from the Walk Audit activity, Fulcrum data, existing plans, and local stakeholder input. Priority levels for recommendations were calculated through consideration of vehicle, pedestrian, and bicyclist traffic volumes; vehicular traffic speed; collision history; presence of existing bicycle/pedestrian facilities; proximity to major identified routes to school; high-level potential cost/complexity of recommendation; and Walk Audit participant input.

This section outlines and explains high and medium priority recommendations specific to the school site. School site-specific recommendations of all priority levels can be found in the “Table of Recommendations” section. Universal recommendations that apply to all school sites are described in Appendix B. Recommendations that suggest programmatic treatments are denoted by “NAL.” Universal recommendations that are focused on infrastructure treatments are denoted by “NAI,” and recommendations that suggest programmatic treatments are denoted by “NAP.” Please note that implementing these recommendations will often require further evaluation and study, as well as design, right-of-way acquisition, compliance checks with existing laws, and coordination with utility, public safety, and other local government departments.

RECOMMENDATIONS #NAI-134 AND NAI-212: LINDA VISTA AVENUE HIGH-PRIORITY RECOMMENDATIONS

Narrative — Linda Vista Avenue is the key north-south collector for the surrounding neighborhoods, serving both West Park Elementary School and Pueblo Vista Magnet School in the Pueblo planning area. As the neighborhood collector, Linda Vista Avenue experiences high volumes of motor vehicle traffic during peak morning and afternoon commute hours in addition to multimodal school-related traffic, as it is along the most direct route to the school from many of the branching residential streets. There are three entrance points to the campus on Linda Vista Avenue, which can result in high volumes of multimodal traffic during peak school hours.

IDENTIFIED BARRIERS

• No bicycle facilities – The lack of bicycle facilities on the corridor fails to provide a dedicated space for bicyclists and indicate to motorists where to expect bicyclists, making the corridor appear unwelcoming to bicyclists.

• No traffic control/traffic-calming – The lack of traffic control or traffic-calming along the long, straight road can facilitate motorist speeding, which reduces motorists’ range of vision, decreases motorist yielding behavior, and increases risk of collision.

• Faded crosswalk – The existing midblock crosswalk on Linda Vista Avenue in front of the school is faded, reducing pedestrian visibility.

RECOMMENDATIONS

• NAI-134 Class II bike lanes – Install Class II bike lanes and implement traffic-calming elements at key intersections (see intersection-specific recommendations).

• NAI-212 Midblock crosswalk improvements – Install Rectangular Rapid Flashing Beacons at the existing midblock crosswalk and repaint high-visibility crosswalk. Install curb extensions on both sides of the crosswalk (future bike facilities should be incorporated into design).
RECOMMENDATIONS #NAI-123 AND NAI-124: CAROL DRIVE
BIKE/PEDESTRIAN IMPROVEMENTS

Narrative – Carol Drive between West Pueblo Avenue and Redwood Road is a key north-south connector for the Pueblo planning area neighborhoods. It is along the most direct route to school from many of the branching residential streets in the area, as well as serving as a direct route to Redwood Middle School to the north.

IDENTIFIED BARRIERS
• No sidewalks – The lack of sidewalks along the corridor forces pedestrians to walk in the road and can prevent students from walking to school altogether.

• No bicycle facilities – The lack of bicycle facilities on the corridor fails to provide a dedicated space for bicyclists and indicate to motorists where to expect bicyclists, making the corridor appear unwelcoming to bicyclists.

RECOMMENDATIONS
• NAI-123 Sidewalks – Install sidewalks on both sides of the street and replace rolled curb with standard curb to discourage illegal parking behavior.

• NAI-124 Class III bike boulevard – Install Class III bike boulevard with sharrows, signage, and traffic-calming measures.

RECOMMENDATION #NAI-140: KATHLEEN DRIVE Sidewalks

Narrative – Kathleen Drive provides an important east-west connection for Pueblo Vista Magnet Elementary School, as it leads to the Barbara Road entrance to campus while along direct routes to the neighborhoods east of the school. As motorists must travel along Kathleen Drive to enter the school parking lot via Barbara Road, increased volumes of motor vehicle traffic can occur during school hours, increasing importance of separated facilities for active transportation users.

IDENTIFIED BARRIERS
• No sidewalks – The lack of sidewalks along the corridor forces pedestrians to walk in the road and can prevent students from walking to school altogether.

RECOMMENDATIONS
• Sidewalks – Install sidewalks on both sides of Kathleen Drive from Linda Vista Avenue to Solano Avenue to fill the gap in the pedestrian network along a significant route to the school.

RECOMMENDATION #NAI-217: KATHLEEN DRIVE AND BARBARA ROAD CROSSWALKS

Narrative – The Kathleen Drive and Barbara Road intersection is immediately adjacent to the Barbara Road entrance to campus. As both the entrance to the school parking lot and a key access point to campus for students arriving from the surrounding neighborhoods, particularly those southeast of the school, this intersection is highly-travelled during arrival and dismissal times.

IDENTIFIED BARRIERS
• Faded low-visibility crosswalks – The two existing crosswalks in the intersection have faded low-visibility crosswalk patterns, reducing pedestrian visibility in the school zone.

• Reduced crosswalk visibility – Pedestrian visibility in the existing crosswalk across Kathleen Drive is further reduced due to a dip in the road at the crosswalk.

RECOMMENDATIONS
• High-visibility crosswalks – Paint/repaint crosswalks on all legs of the intersection with a high-visibility school zone pattern to increase pedestrian visibility and motorist yielding behavior.

RECOMMENDATION #NAI-218: BARBARA ROAD BICYCLE/PEDESTRIAN ACCESS

Narrative – Barbara Road leading to the school campus has no bicycle or pedestrian facilities. Barbara Road leading to the school campus has no bicycle or pedestrian facilities.

IDENTIFIED BARRIERS
• No sidewalks – The lack of sidewalks along the corridor forces pedestrians to walk in the road and can prevent students from walking to school altogether.

• No bicycle facilities – The lack of bicycle facilities on Barbara Road approaching the campus fails to provide a dedicated space for bicyclists and indicate to motorists where to expect bicyclists.

RECOMMENDATIONS
• Sidewalks – Install sidewalks along both sides of the school campus from the school campus to Sherry Drive to fill the gap in the pedestrian network along a significant route to the school.

• Bicycle access – Improve bicycle access to campus along Barbara Road from Kathleen Drive: given that this entrance is currently mainly used as the parking lot entrance, this bicycle access may require additional separation than normally implemented on a residential street.

• Quick-build option – To improve bicycle and pedestrian access at this school entrance in the interim, an option would be to install K-71 bollards along one side of Barbara Road from Kathleen Drive to campus (preferably the east side) to create a separated bicycle/pedestrian path to campus.
IDENTIFIED BARRIERS

• Irregular/infrequent safety education – Irregularly or infrequently provided bicycle/pedestrian safety education can result in unintentional unsafe student bicyclist/pedestrian behavior and a sense of discomfort riding a bike.

RECOMMENDATIONS

• Bicycle and pedestrian safety education – Provide annual in-school bicycle and pedestrian safety education for all students to ensure that all students are familiar with rules of the road and best safety practices.

IDENTIFIED BARRIERS

• Infrequency of encouragement events – While annual countywide encouragement events are a great place to start, infrequent encouragement events are not effective enough in normalizing active transportation as an everyday mode of transportation.

RECOMMENDATIONS

• NAP-028 Encouragement programs – Continue to grow participation in annual encouragement events and organize additional encouragement events throughout the year (ex: Walk and Roll Wednesdays).

• NAP-029 Walking bus/bike train/carpool program – Develop a walking school bus/bike train program to increase the number of students who walk and bike to school while improving sense of safety by forming an adult-supervised group. A carpool program can also be developed for to reduce the number of cars in the school zone.
IDENTIFIED BARRIERS

• Bike parking – Bike parking on campus is only provided in one location at the front of the school, which is only accessible to students by walking along the narrow sidewalk adjacent to the school parking lot or navigating vehicular traffic in the school parking lot. Additionally, bike parking spaces are limited to half-capacity due to rack positioning.

• Mary C Drive entrance – The entrance from Mary C Drive is narrow and closed-in by tall fencing and the pavement is in poor condition, all of which makes the entrance uncomfortable and unwelcoming. The path across the field is also narrow and overgrown by the field.

• Barbara Road bike/pedestrian access – The Barbara Road entrance has no bicycle or pedestrian infrastructure separating users from vehicular traffic.

• Parking lot sidewalk – The sidewalk along the parking lot that leads to the main office lot is not connected to the Linda Vista Avenue sidewalk and the existing sidewalk width is often reduced by vehicle bumper overhang.

RECOMMENDATIONS

• NAI-208 Relocate bike parking – Move one existing bike rack to a new location near a campus entrance based on where bicyclists commonly enter campus. Position all bike racks so that all bike parking spaces are accessible.

• NAI-209 Marcy C Drive path – Repave and widen back entrance path across field to at least 6 feet. Repave entrance to campus from Mary C Drive and install lighting along fence to improve sense of security. Install school zone signage at Mary C Drive entrance to alert motorists of school access point.

• NAI-210 Raised crosswalk/curb extensions – In conjunction with Barbara Road recommendations, install a raised crosswalk or curb extensions and a crosswalk across the parking lot at the Barbara Road entrance. Crosswalk would preferably be installed on the east side to reduce vehicle/pedestrian conflicts. A painted crosswalk across the parking lot would be an interim improvement.

• NAI-211 Linda Vista Ave pedestrian access – Identify and implement a temporary treatment to connect the on-campus sidewalk along the parking lot to the Linda Vista Ave sidewalk (such as a temporary ramp). Install a permanent ramp to comply with ADA access requirements. Widen campus sidewalk to a minimum of 6 feet (8’ preferred).

RECOMMENDATION #NAP-027: BICYCLE AND PEDESTRIAN SAFETY EDUCATION

Narrative – On-campus infrastructure improvements can also be implemented to encourage students to walk or bike to school by making entering campus on-foot or on-bike feel more comfortable and convenient. Schools should consider all entrances that are accessible to bicyclists and pedestrians and ensure that infrastructure is accommodating to groups arriving to campus together, separated from vehicular traffic, accessible for those with wheels, and equipped with nearby appropriate bicycle parking.

MEDIUMPRIORITY

IDENTIFIED BARRIERS

• Damaged sidewalk – The northbound Linda Vista Avenue sidewalk between Kathleen Drive and Ethel Porter Drive is displaced in many locations, largely due to street tree roots, posing a trip hazard and barrier for pedestrians using mobility assistance devices or walking with strollers.

• Sidewalk gap – There is a gap in the northbound Linda Vista sidewalk between the north edge of Pueblo Vista Magnet School campus and Ethel Porter Drive with no crosswalk to southbound side, forcing pedestrians to either walk in the road or cross the street in an unmarked location to reach the other existing sidewalk.

RECOMMENDATIONS

• Sidewalk repair and installation – Repair the northbound sidewalk where displaced, addressing underlying tree root issue, and install northbound sidewalk where missing.

RECOMMENDATION #NAI-133: LINDA VISTA AVENUE SIDEWALK REPAIR/INSTALLATION

Narrative – Linda Vista Avenue is the key north-south collector for the surrounding neighborhoods, serving both West Park Elementary School and Pueblo Vista Magnet School in the Pueblo planning area. As the neighborhood collector, Linda Vista Avenue experiences high volumes of motor vehicle traffic during peak morning and afternoon commute hours in addition to multimodal school-related traffic, as it is along the most direct route to the school from many of the branching residential streets. There are three entrance points to the campus on Linda Vista Avenue, which can result in high volumes of multimodal traffic during peak school hours.

• The northbound Linda Vista sidewalk is displaced in multiple locations.
IDENTIFIED BARRIERS

• No sidewalks – The lack of sidewalks along the corridor force pedestrians to walk in the road and can prevent students from walking to school altogether.

RECOMMENDATIONS

• Sidewalks – Install sidewalks on both sides of Ethel Porter Drive from Linda Vista Avenue to Sandra Drive to fill gap in the pedestrian network along a significant route to the school.

RECOMMENDATION #NAI-133: ETHEL PORTER DRIVE SIDEWALKS

Narrative – Ethel Porter Drive, like many of the residential streets in the school’s neighborhood east of Linda Vista Avenue, does not have sidewalks. Ethel Porter Drive is an important east-west street in the school’s neighborhood as part of the route to school from many residential streets within walking distance of the campus. The street may see high volumes of vehicle traffic during school arrival and dismissal times, as it is one of the closest residential streets to the loading zone at the church that can be used to exit Linda Vista traffic. Consequently, it is a significant gap in the pedestrian network for the neighborhoods around the school.

IDENTIFIED BARRIERS

• No formal circulation policy – The lack of a formal, written circulation policy can result in increased unpredictable road user behavior in the school zone during drop-off and pick-up.

RECOMMENDATIONS

• Circulation policy – Create a comprehensive circulation policy and prioritize outreach and education of this plan to families. A circulation policy specifies how motorists, pedestrians, and bicyclists should circulate through the school zone and can include policies for safe motorist behavior.

RECOMMENDATION #NAP-030: CIRCULATION POLICY

Narrative – The school currently does not have a formal circulation policy; the only information provided on the school website about circulation is a brief reminder about the loading zone at the church across the street. Circulation policies provide opportunities for schools to promote structure and predictability around the school zone during school arrival and dismissal times, which can make walking and biking feel safer, and to remind all road users of safe transportation behaviors.

Arrival and Departure Expectations

To ensure the safety of all Northwood students and a positive community culture during drop-off and pick-up, please follow these guidelines:

• Morning/Drop Off:
 - Parents are encouraged to walk their children from home or park along Oxford or Berks (or Linda Vista) and walk or bike in.
 - The Rear Parking Lot is for Buses and Staff Only. No through traffic.
 - The Front Parking Lot is reserved for Staff Parking and ADA Accessible Parking.
 - We have a Loading/Drop-off zone in front of the school. Drivers must stay in their vehicles at all times. Kinder parents needing to undo child seat restraints should park along the street and walk in with students.
 - Unaccompanied students wait on the Yellow Line in front of the office until 8:00 am bell, then go to their classroom dots until 8:05 am bell.

• Afternoon/Pick Up:
 - Parents are encouraged to walk their children home or park along Oxford or Berks (or Linda Vista) and walk in.
 - Gate to Loading/Drop-off zone will open promptly at 2:30 pm. Drivers must stay in their vehicles at all times and continue moving forward.
 - Students picked up late need to wait on the benches in front of school or in the office. Students may not play on the playground after school. We ask students to wait at least 30 minutes before we call someone.

• Last Wednesday of the Month Mornings:
 - Students wait out front on the yellow lines for the 8:00 am bell, then move to tables for assembly.

• Rainy Days:
 - Students wait in MU room until their teacher picks them up at 8:05 am
ADDITIONAL CONSIDERATIONS

Improvements listed in this section are those within a half-mile radius that are either considered significant to the school area but are not located along routes to the school based on the school’s enrollment boundary or were ranked as a higher priority during the Walk Audit for another nearby school. These barriers are listed as high or medium priority due to their impact on routes to nearby schools in the neighboring areas and will be analyzed in more depth in the reports for the affected schools.

RECOMMENDATIONS #NAI-109 – NAI-114: REDWOOD ROAD ROAD DIET AND BICYCLE/PEDESTRIAN IMPROVEMENTS

IDENTIFIED BARRIERS
- High vehicle speed and volume arterial corridor with little traffic control and no traffic-calming
- Narrow sidewalks
- Sidewalk obstructions
- Discontinuous sidewalks
- Not enough lighting
- No bicycle facilities

RECOMMENDATIONS
- Road diet and redesign to incorporate Complete Streets infrastructure and SRTS recommendations
- Widen existing sidewalks
- Fill eastbound sidewalk gaps
- Add street-scale lighting
- Install Class IV protected bike lanes with green conflict markings at commercial driveways, install Class II buffered bike lanes with traffic-calming for areas where residential parking already exists

RECOMMENDATION #NAI-116: REDWOOD ROAD AND CAROL DRIVE INTERSECTION

IDENTIFIED BARRIERS
- Large intersection
- High vehicle traffic volumes/speeds
- Long crossing distances
- Wide curb radii

RECOMMENDATIONS
- Protected intersection connected by Class I facilities
- Connect Vine Trail to north end of Park and Ride, improve crossing conditions across Redwood

RECOMMENDATION #NAI-127 – NAI-128: REDWOOD ROAD AND SOLANO AVENUE INTERSECTION

IDENTIFIED BARRIERS
- Faded crosswalks
- Long crossing distances
- Wide curb radii
- Minimal curb space in high pedestrian volume area

RECOMMENDATIONS
- Protected intersection connected by Class I facilities
- Connect Vine Trail to north end of Park and Ride, improve crossing conditions across Redwood

RECOMMENDATION #NAI-130: REDWOOD ROAD AND LINDA VISTA INTERSECTION

IDENTIFIED BARRIERS
- Faded, low-visibility crosswalk pattern
- High traffic volumes
- Long crossing distances
- Wide curb radii

RECOMMENDATIONS
- Short-term: Repaint crosswalks, install curb extensions
- Long-term: redesign intersection with Redwood Rd road diet

Relevant Reports:
- Redwood Middle School Walk Audit Report

Relevant Reports:
- Redwood Middle School Walk Audit Report
Infrastructure:

TABLE OF RECOMMENDATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ID #</th>
<th>RECOMMENDATION</th>
<th>COST</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>School grounds</td>
<td>NAI-208</td>
<td>School bike parking – only located at front entrance to school; students have to share narrow sidewalk along parking lot or navigate traffic in parking lot; bike racks positioned so only half of spaces are accessible.</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>Entrance from Mary C Drive</td>
<td>NAI-209</td>
<td>Entrance from Mary C Drive narrow, pavement in poor condition, narrow and closed-in by fence makes it unwelcoming. Path across field is narrow and pavement is in poor condition.</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>Barbara Road entrance</td>
<td>NAI-210</td>
<td>Barbara Road entrance has no bike or pedestrian infrastructure. In conjunction with Barbara Road recommendations, install raised crosswalk or curb extensions at driveway across parking lot (preferably from east side of Barbara Rd to reduce vehicle/pedestrian conflicts). Can be painted crosswalk in the interim.</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>Sidewalk to main office along parking lot</td>
<td>NAI-211</td>
<td>Sidewalk to main office along parking lot is not connected to Linda Vista Ave sidewalk, and existing width is often reduced by vehicle bumper hangover.</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>Northbound sidewalk between Kathleen Drive and Ethel Porter Drive</td>
<td>NAI-133</td>
<td>Northbound sidewalk between Kathleen Drive and Ethel Porter Drive displaced in many locations. Sidewalk missing between north edge of Pueblo Vista Magnet School and Ethel Porter Drive with no crosswalk to southbound side.</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>No bicycle facilities; long, straight road with no traffic-calming or traffic control</td>
<td>NAI-134</td>
<td>Install Class II bike lanes* and traffic-calming elements at key intersections (see intersection-specific recommendations).</td>
<td>$<5</td>
<td>High</td>
</tr>
<tr>
<td>Midblock crosswalk between Kathleen Dr and Ethel Porter Dr</td>
<td>NAI-212</td>
<td>Midblock crosswalk. Install curb extensions on both sides of crosswalk (future bike facilities should be incorporated into design). Install Rectangular Rapid Flashing Beacons.</td>
<td>$<5</td>
<td>High</td>
</tr>
</tbody>
</table>

LOCATIONS

1. **Linda Vista Avenue and Sutherland Drive intersection**
 - ID # NAI-213
 - Low-visibility crosswalk pattern in school zone. Wide curb radii facilitate fast motorist turns. Long crossing distance across Sutherland Drive. Lack of red zones allows motorists to obstruct crosswalk visibility. Upgrade crosswalk to high-visibility school zone pattern. Install curb extensions on both sides of crosswalk. $<5-$5 Low

2. **Linda Vista Avenue and Ethel Porter Drive intersection**
 - ID # NAI-214
 - No crosswalk across Ethel Porter Drive
 - Paint high-visibility school zone crosswalk across Ethel Porter Drive
 - $ Low

3. **Redwood Road from Solano Avenue to Dry Creek Road**
 - ID # NAI-215
 - High vehicle speed and volume arterial corridor with little traffic control and no traffic-calming, no bicycle facilities, and high-stress pedestrian infrastructure. Significant east-west connection for neighborhoods and 3 public schools within half-mile. Implement road diet to two travel lanes and a center turn lane along corridor to create space for Complete Streets infrastructure*. Integrate specific recommendations from SRTS reports into road redesign. $$ High

4. **Nearby sidewalks; sidewalks often obstructed by utility poles, sign posts, and other equipment**
 - ID # NAI-110
 - Narrow sidewalks
 - Widen existing sidewalks from Solano Avenue to Carol Drive
 - $ High

5. **Sutherland Drive**
 - ID # NAI-111
 - Narrow sidewalks
 - Widen existing sidewalks from Carol Drive to Dry Creek Road
 - $$ Medium

6. **Discontinuous sidewalks**
 - ID # NAI-112
 - Discontinuous sidewalks
 - Fill eastbound sidewalk gaps from Carol Drive to Linda Vista Avenue
 - $ High

7. **Not enough lighting**
 - ID # NAI-113
 - Not enough lighting
 - Add street-scale lighting along corridor, prioritizing segment between Solano and Linda Vista
 - $ Medium

8. **No bicycle facilities**
 - ID # NAI-114
 - No bicycle facilities
 - Install Class IV protected bike lanes with green conflict markings at commercial driveways along segments where there is already no on-street parking. Install Class II buffered bike lanes with traffic-calming for areas between Carol Drive and Dry Creek Road where residential parking already exists.
 - $ High

9. **Redwood Road and Carol Drive intersection**
 - ID # NAI-116
 - Faded crosswalks, long crossing distances across Redwood, offset intersection configuration. Wide curb radii on northwest, northeast, and southeast curbs facilitate fast motorist turning movement. Minimal curb space for pedestrians despite high pedestrian volumes from adjacent school.
 - Near term: repaint and upgrade crosswalk to continental striping. Push back limit lines and install curb extensions. Long term: Intersection will require redesign with Redwood Rd road diet and bike/ped infrastructure upgrades. $ High

*Complete Streets infrastructure includes traffic-calming, no bicycle facilities, and high-stress pedestrian infrastructure.
Walk Audit Report | 3.31.21

Walk Audit Report

West Pueblo Avenue
Redwood Road to
Carol Drive from
Barbara Road to
Kathleen Drive

Pueblo Vista Magnet Elementary School

NAPA COUNTYWIDE PEDESTRIAN PLAN (2016)

NAPA COUNTYWIDE BICYCLE PLAN (2019)

Programmatic Improvements:

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>ID #</th>
<th>RECOMMENDATION</th>
<th>LOCATION</th>
<th>FREQUENCY</th>
<th>COST</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NAP-027</td>
<td>Provide regular bicycle and pedestrian safety education</td>
<td>School site</td>
<td>Annual</td>
<td>$</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>NAP-028</td>
<td>Continue growing participation in annual countywide encouragement events. Host independent encouragement events in between annual events</td>
<td>School site</td>
<td>Annual for countywide events. Twice a year for independent events, with goal of increasing frequency</td>
<td>$</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>NAP-029</td>
<td>Develop regular walking school bus and bike train programs for students in walking/biking distance and carpool program to reduce number of cars in school zone</td>
<td>School site/local neighborhoods</td>
<td>Monthly with goal of increasing frequency</td>
<td>$</td>
<td>High</td>
</tr>
</tbody>
</table>

Locations and Barriers:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ID #</th>
<th>BARRIER</th>
<th>RECOMMENDATION</th>
<th>COST</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>NAI-123</td>
<td>No sidewalks</td>
<td>Install sidewalks on both sides of the road, replace rolled curb with standard curb to discourage illegal parking behavior</td>
<td>$$</td>
<td>High</td>
</tr>
<tr>
<td>7</td>
<td>NAI-124</td>
<td>No bicycle facilities</td>
<td>Install Class III bike boulevard with sharrows, signage, and traffic-calming measures*</td>
<td>$</td>
<td>High</td>
</tr>
<tr>
<td>7</td>
<td>NAI-138</td>
<td>No crosswalks at any of the intersections from Ethel Porter Drive to Janette Drive</td>
<td>Paint crosswalks north-south at Sandra Dr and Janette Dr, paint all four crosswalks at Ethel Porter Dr and Kathleen Dr</td>
<td>$</td>
<td>Low</td>
</tr>
<tr>
<td>8</td>
<td>NAI-127</td>
<td>Large intersection with high vehicle traffic volumes/speeds. Long crossing distances. Wide curb radii facilitate fast motorist turning movements. Key intersection along Vine Trail shared-use path route</td>
<td>Install protected intersection connected by Class I facilities</td>
<td>$$</td>
<td>High</td>
</tr>
<tr>
<td>8</td>
<td>NAI-128</td>
<td>Poor sight lines entering 76 station, high conflict risk between motorists and bicyclists/pedestrians, particularly with Vine Trail alignment</td>
<td>Connect Vine Trail to north end of Park and Ride with continued Class I shared-use path and improved crossing conditions across Redwood for bicyclists and pedestrians*</td>
<td>$$-$ $$</td>
<td>High</td>
</tr>
<tr>
<td>8</td>
<td>NAI-129</td>
<td>Faded, low-visibility crosswalk pattern in school zone, high traffic volume intersection, long crossing distances, wide curb radii facilitate fast motorist turning movements</td>
<td>Short-term: Repaint crosswalks, install curb extensions on all four corners. Long-term: Intersection will require redesign with Redwood road diet</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>8</td>
<td>NAI-130</td>
<td>Faded, low-visibility crosswalk pattern in school zone, high traffic volume intersection, long crossing distances, wide curb radii facilitate fast motorist turning movements</td>
<td>Close northwest entrance to 76 station on Redwood to improve pedestrian/bicyclist safety approaching intersection</td>
<td>$</td>
<td>Low</td>
</tr>
<tr>
<td>9</td>
<td>NAI-132</td>
<td>No sidewalks</td>
<td>Install sidewalks on both sides of Ethel Porter Drive</td>
<td>$$</td>
<td>Medium</td>
</tr>
<tr>
<td>9</td>
<td>NAI-133</td>
<td>No sidewalks</td>
<td>Install sidewalks on both sides of Kathleen Drive</td>
<td>$$</td>
<td>High</td>
</tr>
<tr>
<td>10</td>
<td>NAI-134</td>
<td>No sidewalks</td>
<td>Install crosswalk across Baywood Lane</td>
<td>$</td>
<td>Low</td>
</tr>
</tbody>
</table>

* = projects included in Napa Countywide Pedestrian Plan (2016) or Napa Countywide Bicycle Plan (2019)
COLLISION MAP AND DATA

Summary Statistics

<table>
<thead>
<tr>
<th>RADIUS</th>
<th>FATAL</th>
<th>SEVERE INJURY</th>
<th>VISIBLE INJURY</th>
<th>COMPLAINT OF PAIN</th>
<th>PEDESTRIAN</th>
<th>BICYCLE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>< .25 mi.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.25-.5 mi.</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

Collision List

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>PRIMARY</th>
<th>SECONDARY</th>
<th>BIKE/PED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-11-18</td>
<td>08:03</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>No/Yes</td>
</tr>
<tr>
<td>2017-06-29</td>
<td>21:22</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>No/Yes</td>
</tr>
<tr>
<td>2019-01-15</td>
<td>08:29</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>Yes/No</td>
</tr>
<tr>
<td>2019-06-03</td>
<td>11:02</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>Yes/No</td>
</tr>
<tr>
<td>2016-05-03</td>
<td>11:20</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>No/Yes</td>
</tr>
<tr>
<td>2016-06-03</td>
<td>12:47</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>No/Yes</td>
</tr>
<tr>
<td>2016-08-09</td>
<td>19:16</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>No/Yes</td>
</tr>
<tr>
<td>2017-04-21</td>
<td>13:36</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>Yes/No</td>
</tr>
<tr>
<td>2017-06-03</td>
<td>09:11</td>
<td>Carol Dr</td>
<td>Redwood Rd</td>
<td>Yes/No</td>
</tr>
<tr>
<td>2017-10-30</td>
<td>07:15</td>
<td>Solano Av</td>
<td>Redwood Rd</td>
<td>Yes/No</td>
</tr>
<tr>
<td>2018-10-15</td>
<td>17:25</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>Yes/No</td>
</tr>
<tr>
<td>2019-02-04</td>
<td>13:29</td>
<td>Redwood Rd</td>
<td>Solano Av</td>
<td>Yes/No</td>
</tr>
</tbody>
</table>

APPENDICES

Appendix A: EMC Survey Toplines
Appendix B: Universal Recommendations
Appendix C: Quick-Build Options for Infrastructure Improvements
Appendix D: Bike Parking Guide
Appendix E: Recommendation Cost Range Matrix
Appendix F: Next Steps

FIGURES & MAPS

Figure 1 – NCOE Hand Tally Data (p. 8)
Figure 2 – EMC Research Polling Results (p. 8)
Figure 3 – Enrollment Data by Group (p. 8)
Figure 4 – Enrollment Data by Grade (p. 8)
Figure 5 – Encouragement and Education Data (p. 13)
Figure 6 – Collision Data (p. 32)

Map 1 – Enrollment Boundary (p. 7)
Map 2 – School Site Location in City (p. 9)
Map 3 – Existing Bicycle Facilities (p. 11)
Map 4 – Existing Pedestrian Facilities (p. 12)
Map 5 – Recommendations (p. 27)
Map 6 – Collision Map (p. 32)
FOOTNOTES

j Overall Facility Rating determined from 2019-20 School Accountability Report Card
APPENDIX A

EMC Survey Toplines

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
Evaluation: Research & Methodology

- **Purpose:** Gain insight into parent practices, perceptions, and attitudes around children walking and riding bicycles to and from school; explore barriers to behavior change

- **Quantitative survey of 459 parents of K-8 students in Napa County**
 - Conducted online and by telephone, offered in English and Spanish
 - Conducted March 11 – April 12, 2021
 - Participants recruited via communications from school districts and targeted online and telephone contacts
 - *Survey methods were designed to include as many participants as possible; not a random sample*

- **Qualitative follow-up research**
 - One online focus group with 7 participants in English; 4 in-depth telephone interviews in Spanish
 - Conducted May 20 – 28, 2021
 - Targeted parents who lived within two miles of their school site and would like their children to walk or bike to school
Survey of Parents/Guardians of at least one child in K-8th Grade
Napa County, California
Hybrid Email-to-Web/Text-to-Web/Live Telephone Survey
Conducted March 11-April 12, 2021
n=459
EMC Research #21-6420

All numbers in this document represent percentage (%) values, unless otherwise noted. Please note that due to rounding, percentages may not add up to exactly 100%.

INTRO: Your opinions are important! Thank you for participating in this survey EMC Research is conducting on behalf of the Napa County Safe Routes to School program in partnership with local school districts. You may have been contacted previously to complete this survey via telephone and we ask each individual only complete the survey once.

Your responses will remain completely confidential. Please try to answer every question even if you’re not sure. If you need to, you may skip a question.

1. Are you the parent or guardian of any children currently attending kindergarten through eighth grade in one or more of the school districts located in Napa County below? Please select the District(s) that your K-8th grade student(s) is/are currently enrolled in, check all that apply. (MULTIPLE RESPONSES ACCEPTED)
 - Calistoga Joint Unified School District 0
 - Howell Mountain Elementary School District -
 - Napa Valley Unified School District 97
 - Pope Valley Union Elementary School District 0
 - Saint Helena Unified School District 2
 - Another District or school in Napa County (please specify) 1
 - None of the above → TERMINATE -
 - (No response) → TERMINATE -

2. Please indicate below what grade(s) your child/children are in. Please select all that apply. (MULTIPLE RESPONSES ACCEPTED)
 - Kindergarten 22
 - 1st grade 17
 - 2nd grade 15
 - 3rd grade 20
 - 4th grade 15
 - 5th grade 15
 - 6th grade 14
 - 7th grade 12
 - 8th grade 9
 - 9th through 12th grade → TERMINATE IF ONLY RESPONSE SELECTED 14
 - (No response) → TERMINATE -
(IF MORE THAN ONE K-8 STUDENT: “Although you have multiple children in K-8, we ask that you please think about your oldest K-8 child when answering the next questions.”)

For these next few questions, please think back to when your (child was/children were) attending school before the COVID-19 pandemic.

3. On most days, what was the primary way your (K-8 child/oldest K-8 child) travelled to school?
 - Family vehicle (only children in your family) 73
 - Carpool (children from other families) 3
 - School bus 3
 - Other public transportation 0
 - Bike 4
 - Walk 16
 - Other (scooter, skateboard, inline skates, etc.) 0
 - (No response) 0

4. And on most days, what was the primary way your (K-8 child/oldest K-8 child) travelled from school?
 - Family vehicle (only children in your family) 73
 - Carpool (children from other families) 3
 - School bus 3
 - Other public transportation 1
 - Bike 4
 - Walk 15
 - Other (scooter, skateboard, inline skates, etc.) 0
 - (No response) 0

5. How long did it normally take your (K-8 child/oldest K-8 child) to get to/from school?
 - Less than 5 minutes 18
 - 5-10 minutes 42
 - 11-15 minutes 22
 - 16-20 minutes 8
 - More than 20 minutes 9
 - (No response) 0

6. Has your (K-8 child/oldest K-8 child) ever walked or biked to/from school?
 - Yes 43
 - No 56
 - (No response) 0
7. **(ONLY ASKED IF Q6=1, 'Yes, has walked/biked to/from school')** In what grade did your child begin to walk or bike to/from school? (n=199)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-school</td>
<td>7</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>30</td>
</tr>
<tr>
<td>1st grade</td>
<td>9</td>
</tr>
<tr>
<td>2nd grade</td>
<td>6</td>
</tr>
<tr>
<td>3rd grade</td>
<td>10</td>
</tr>
<tr>
<td>4th grade</td>
<td>8</td>
</tr>
<tr>
<td>5th grade</td>
<td>9</td>
</tr>
<tr>
<td>6th grade</td>
<td>13</td>
</tr>
<tr>
<td>7th grade</td>
<td>6</td>
</tr>
<tr>
<td>8th grade</td>
<td>1</td>
</tr>
<tr>
<td>9th through 12th grade</td>
<td>1</td>
</tr>
<tr>
<td>(No response)</td>
<td>2</td>
</tr>
</tbody>
</table>

8. Thinking generally, what grade would you feel comfortable with a child walking or biking to/from school?

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-school</td>
<td>1</td>
</tr>
<tr>
<td>Kindergarten</td>
<td>5</td>
</tr>
<tr>
<td>1st grade</td>
<td>2</td>
</tr>
<tr>
<td>2nd grade</td>
<td>2</td>
</tr>
<tr>
<td>3rd grade</td>
<td>5</td>
</tr>
<tr>
<td>4th grade</td>
<td>14</td>
</tr>
<tr>
<td>5th grade</td>
<td>12</td>
</tr>
<tr>
<td>6th grade</td>
<td>16</td>
</tr>
<tr>
<td>7th grade</td>
<td>10</td>
</tr>
<tr>
<td>8th grade</td>
<td>7</td>
</tr>
<tr>
<td>9th through 12th grade</td>
<td>13</td>
</tr>
<tr>
<td>I would not feel comfortable at any grade</td>
<td>14</td>
</tr>
<tr>
<td>(No response)</td>
<td>1</td>
</tr>
</tbody>
</table>
Continuing to think about times before the COVID-19 pandemic, please indicate how comfortable you were with your (K-8 child/oldest K-8 child) doing each of the following.

<table>
<thead>
<tr>
<th>SCALE:</th>
<th>Very Comfortable</th>
<th>Somewhat Comfortable</th>
<th>Not too Comfortable</th>
<th>Not at all Comfortable</th>
<th>(No Response)</th>
<th>Total Comfort.</th>
<th>Total Not Comfort.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>Taking a bus to school</td>
<td>32</td>
<td>33</td>
<td>17</td>
<td>15</td>
<td>3</td>
<td>65</td>
</tr>
<tr>
<td>10.</td>
<td>Walking to school without an adult</td>
<td>8</td>
<td>18</td>
<td>19</td>
<td>54</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>11.</td>
<td>Riding a bike to school without an adult</td>
<td>7</td>
<td>17</td>
<td>22</td>
<td>53</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>12.</td>
<td>Walking to school with an adult</td>
<td>66</td>
<td>19</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>13.</td>
<td>Riding a bike to school with an adult</td>
<td>45</td>
<td>29</td>
<td>11</td>
<td>13</td>
<td>2</td>
<td>74</td>
</tr>
</tbody>
</table>

(OONLY ASKED IF Q10=3 OR 4, ‘not comfortable’) What would you say is the main reason you were not comfortable with your (K-8 child/oldest K-8 child) walking to school without an adult?

(VERBATIM RESPONSES CODED INTO BELOW CATEGORIES) (n=335)

- Worry for child's safety/Crime: 28
- Not old enough: 19
- Live too far away: 17
- Traffic/Busy streets: 11
- Street crossing/Intersections: 6
- Not enough sidewalks: 5
- Crossing Highway 29: 3
- Other: 8
- Don’t know: 1

(OONLY ASKED IF Q11=3 OR 4, ‘not comfortable’) What would you say is the main reason you were not comfortable with your (K-8 child/oldest K-8 child) riding a bike to school without an adult?

(VERBATIM RESPONSES CODED INTO BELOW CATEGORIES) (n=324)

- Worry for child's safety/Crime: 29
- Not old enough: 18
- Traffic/Busy streets: 13
- Live too far away: 9
- Street crossing/Intersections: 5
- Crossing Highway 29: 4
- Can't ride a bike: 4
- Not enough sidewalks: 3
- No bike lanes: 3
- Other: 10
- Don’t know: 1
For these next few questions, please think back to when your (child was/children were) attending school before the COVID-19 pandemic.

16INT. Please indicate whether you agree or disagree with each of the following statements.

<table>
<thead>
<tr>
<th>SCALE:</th>
<th>Strongly Agree</th>
<th>Somewhat Agree</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
<th>(No Response)</th>
<th>Total Agree</th>
<th>Total Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>I would generally like my K-8 (child/children) to be able to walk or bike to/from school.</td>
<td>43</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>17.</td>
<td>My K-8 (child enjoys/children enjoy) walking and/or biking places.</td>
<td>57</td>
<td>31</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>18.</td>
<td>I would never let my K-8 (child/children) walk or bike to/from school.</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>28</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>19.</td>
<td>It is safe for children to walk or bike in my area.</td>
<td>13</td>
<td>45</td>
<td>22</td>
<td>20</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td>20.</td>
<td>There are enough bike paths and sidewalks for my K-8 (child/children) to walk or bike to/from school.</td>
<td>13</td>
<td>27</td>
<td>20</td>
<td>39</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>21.</td>
<td>I am concerned about speeding or distracted drivers if/when my (child/children) walk or bike to/from school.</td>
<td>81</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>22.</td>
<td>The school is too far away for my K-8 (child/children) to walk or bike there.</td>
<td>37</td>
<td>19</td>
<td>15</td>
<td>29</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>23.</td>
<td>My K-8 (child/children) cannot bike to and from school because of their before- or after-school commitments.</td>
<td>13</td>
<td>26</td>
<td>25</td>
<td>35</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>24.</td>
<td>Walking or biking to and from school is a good way for my K-8 (child/children) to get physical exercise.</td>
<td>69</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>93</td>
</tr>
<tr>
<td>25.</td>
<td>Walking or biking to and from school is a good way for me to spend quality time with my K-8 (child/children).</td>
<td>55</td>
<td>30</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>26.</td>
<td>I would only allow my K-8 (child/children) to walk or bike to and from school if I, or another adult, can accompany them.</td>
<td>54</td>
<td>25</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>79</td>
</tr>
</tbody>
</table>

(END RANDOMIZE)
Next, you will see some things that local schools and other organizations could do that may affect how you feel about your (K-8 child/oldest K-8 child) biking to school once the COVID-19 pandemic has ended. For each, please indicate if the item would make you feel more comfortable about allowing your (K-8 child/oldest K-8 child) to walk or bike to school once the COVID-19 pandemic has ended.

<table>
<thead>
<tr>
<th>SCALE:</th>
<th>Much More Comfortable</th>
<th>Somewhat More Comfortable</th>
<th>A Little More Comfortable</th>
<th>(No Difference)</th>
<th>(Don't Know)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27. Limit how much children have to carry in their backpacks</td>
<td>36</td>
<td>25</td>
<td>14</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>28. Provide children and parents with information and maps on safe routes to and from school</td>
<td>37</td>
<td>24</td>
<td>16</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>29. Offer free bicycle safety courses for children to learn how to ride safely on local streets</td>
<td>43</td>
<td>21</td>
<td>21</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>30. Provide opportunities for children to practice biking in a car-free environment</td>
<td>42</td>
<td>23</td>
<td>14</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>31. Offer free pedestrian safety classes for children</td>
<td>39</td>
<td>20</td>
<td>21</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>32. Provide crossing guards at major intersections</td>
<td>62</td>
<td>22</td>
<td>10</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>33. Organize groups of students to walk or bike to/from school together</td>
<td>42</td>
<td>26</td>
<td>17</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>34. Provide a local parent or adult volunteer to walk or bike with children to/from school</td>
<td>36</td>
<td>27</td>
<td>15</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>35. Add designated bike lanes to roads</td>
<td>46</td>
<td>24</td>
<td>15</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>36. Improve the condition of existing bike lanes</td>
<td>47</td>
<td>23</td>
<td>14</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>37. Add more bike paths that are separated from the road</td>
<td>62</td>
<td>17</td>
<td>11</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>38. Add more sidewalks</td>
<td>53</td>
<td>21</td>
<td>13</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>39. Fix missing or broken sidewalks</td>
<td>56</td>
<td>19</td>
<td>15</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>40. Increase the visibility and safety of crosswalks</td>
<td>61</td>
<td>20</td>
<td>11</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>41. Increase the police presence on routes that lead to schools</td>
<td>52</td>
<td>23</td>
<td>13</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>42. Reduce the speed of traffic on streets that kids use to walk or bike to school</td>
<td>53</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

(END RANDOMIZE)
43. Is there something else that could be done that would make you feel more comfortable about allowing your (K-8 child/oldest K-8 child) to walk or bike to school once the COVID-19 pandemic has ended? (VERBATIM RESPONSES CODED INTO BELOW CATEGORIES)

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nothing/No additional comments</td>
<td>42</td>
</tr>
<tr>
<td>Add or improve bike paths/Sidewalks/Crosswalks</td>
<td>15</td>
</tr>
<tr>
<td>Increase crossing guards/Supervision/Police presence</td>
<td>11</td>
</tr>
<tr>
<td>School is too far away/Can't use active modes</td>
<td>9</td>
</tr>
<tr>
<td>Speeding concerns/Increased road law enforcement</td>
<td>5</td>
</tr>
<tr>
<td>Increase safety related to Highway 29</td>
<td>2</td>
</tr>
<tr>
<td>Already walks/bikes/etc.</td>
<td>2</td>
</tr>
<tr>
<td>Provide bikes/Equipment/Storage</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>10</td>
</tr>
<tr>
<td>Don't know/Refused</td>
<td>2</td>
</tr>
</tbody>
</table>

44. About how far does your (K-8 child/oldest K-8 child) live from school? If you’re not sure, give your best guess.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than ½ mile</td>
<td>14</td>
</tr>
<tr>
<td>½ mile up to 1 mile</td>
<td>19</td>
</tr>
<tr>
<td>1 mile up to 2 miles</td>
<td>21</td>
</tr>
<tr>
<td>2 miles up to 3 miles</td>
<td>14</td>
</tr>
<tr>
<td>3 miles up to 5 miles</td>
<td>15</td>
</tr>
<tr>
<td>5 miles or more</td>
<td>16</td>
</tr>
<tr>
<td>(No response)</td>
<td>1</td>
</tr>
</tbody>
</table>

45. Does your (K-8 child/oldest K-8 child) currently have their own working bicycle?

<table>
<thead>
<tr>
<th>Answer</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>79</td>
</tr>
<tr>
<td>No</td>
<td>21</td>
</tr>
<tr>
<td>(No response)</td>
<td>-</td>
</tr>
</tbody>
</table>

46. Did you ride a bicycle when you were your K-8 (child’s/children’s) age?

<table>
<thead>
<tr>
<th>Answer</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>78</td>
</tr>
<tr>
<td>No</td>
<td>21</td>
</tr>
<tr>
<td>(No response)</td>
<td>0</td>
</tr>
</tbody>
</table>

These last questions are for statistical purposes only. Your responses will remain completely confidential.

47. Do you identify as...

<table>
<thead>
<tr>
<th>Gender</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>14</td>
</tr>
<tr>
<td>Female</td>
<td>83</td>
</tr>
<tr>
<td>Non-binary</td>
<td>-</td>
</tr>
<tr>
<td>Another gender identity</td>
<td>-</td>
</tr>
<tr>
<td>Prefer not to respond</td>
<td>3</td>
</tr>
</tbody>
</table>
48. What year were you born? *(YEARS CODED INTO CATEGORIES)*
 - 40-49 (1972-1981): 45
 - 50-64 (1957-1971): 12
 - 65 or older (1956 or earlier): 1
 - Prefer not to respond: 1

49. Do you consider yourself to be...
 - Hispanic or Latino: 38
 - White or Caucasian: 41
 - African American or Black: 1
 - Asian or Pacific Islander: 7
 - Something else: 3
 - Prefer not to respond: 10

50. Do you...
 - Own or are buying the home or apartment where you live: 55
 - Rent or lease: 35
 - Prefer not to respond: 10

THANK YOU!
Universal Recommendations

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
Appendix B
Napa County SRTS Walk Audit Report
Universal Recommendations

The Napa County Safe Routes to School (SRTS) Walk Audit Report Universal Recommendations apply to all public schools in Napa County, which reflects the schools served under the SRTS program. Universal recommendations are meant to supplement site-specific recommendations and address common barriers in the bicycle/pedestrian network around schools in a concise and consistent manner.

Universal Recommendation 1: High-Visibility School Zone Crosswalks

Federal Highway Administration data\(^1\) indicates that high-visibility crosswalk striping improves the visibility of crosswalks compared to standard parallel lines and can improve yielding behavior by drivers\(^2\). Additionally, crosswalk visibility enhancements, which include but are not limited to high-visibility crosswalks, can reduce crashes by 23-48%\(^1\).

- Recommendation: High-visibility (continental or ladder pattern) crosswalks should be implemented at the following locations:
 - Utilizing the California Vehicle Code (CVC) §21368 requirements for designating crosswalks as “school zone” crosswalks (painted yellow), all school zone crosswalks;
 - And, all marked crosswalks at an intersection with a designated collector or arterial roadway within 1320 feet (0.25 miles) of a school (following the same measuring method as CVC §21368)

This recommendation applies to existing and future crosswalks. It does not provide guidance for new crosswalk warrants; it is primarily focused on the improvement of crosswalks within the roughly ¼ mile radius examined through the Walk Audit process.

Universal Recommendation 2: Intersection Daylighting

Daylighting is the practice of removing visual barriers, including parked vehicles, within a certain distance of a crosswalk or intersection to greatly improve visibility for pedestrians, bicyclists, and motorists. The National Association of City Transportation Officials recommends removing parking within 20-25 feet of an intersection. Daylighting can be accomplished through permanent infrastructure, such as concrete curb extensions, or more cost-effective materials, such as paint and bollards.

\(^1\) https://safety.fhwa.dot.gov/ped_bike/step/docs/TechSheet_VizEnhancemt_508compliant.pdf
Recommendation: Daylighting strategies should be implemented at the following intersections:
 o Those that are in the school zone as defined by CVC §21368;
 o Those that are intersections with a designated collector or arterial roadway within 2640 feet (0.5 miles) of a school (following the same measuring method as CVC §21368).

Universal Recommendation 3: Sidewalk Width Adjacent to School Campus

A barrier frequently identified during Walk Audits throughout the county was that sidewalks immediately adjacent to the school were too narrow for the high volumes of pedestrians generated during school arrival and dismissal times. Most of these sidewalks were roughly 4 feet wide, including space for utility and signage poles. While these sidewalks may meet specific municipal standards, they do not accommodate high volumes of school-related pedestrians and can deter or prevent students from walking to school if they travel with their families, in groups, or use a mobility assistance device. This is especially so when sidewalks are obstructed by utility poles, signal boxes, and other objects.

 Recommendation: All sidewalks that lead to a school campus entrance should be a minimum of 6 feet wide within at least 250 feet of the school entrance; if a school has only one entrance, the sidewalk leading to that entrance should be a minimum of 8 feet wide within 250 feet of that entrance.

Universal Recommendation 4: Class III Bike Boulevard Traffic-Calming

Class III bicycle boulevards are on-street bicycle facilities that have traditionally been marked by signage and share-the-road stencils (“sharrows”) painted in the vehicle travel lane. Class III facilities do not provide any separation between bicyclists and motorists and instead indicate to road users that bicyclists and motorists must share the road. Such facilities are intended to be installed on low-speed (25 mph or less*) and low-volume (<3,000 vehicles/day*) roadways; however, the current practice of implementing only signage and sharrows for Class III routes frequently does not meet the comfort and safety perception needs of the “Interested but Concerned” user profile of bicyclists, which includes an estimate of 51%-56% of the population and is typically the profile assumed for most school-age children. To create a lower stress bicycle network, the Federal Highway Administration describes improving bicycle boulevards by “slowing motor vehicle speeds and implementing other speed management measures.”

 Recommendation: All Class III bicycle boulevards should be marked with sharrows and signage and must be treated with traffic-calming strategies to enforce the desired speed limit and prevent motorist speeding. Class III bicycle boulevards adjacent to school campuses or along roadways that facilitate
motorist speeding (long, straight, and/or minimal traffic control) should be prioritized for traffic-calming treatments.

* Metrics established by the Federal Highway Association in their 2019 Bikeway Selection Guide.

Universal Recommendation 5: Curb Ramps (Americans with Disabilities Act)

Some of the early Walk Audit reports specifically call out intersections or other pedestrian access points where curb ramps compliant with the Americans with Disabilities Act were missing, which creates a significant connectivity barrier for pedestrians who use mobility assistance devices. However, following these reports, the Napa County Safe Routes to School team recognized that many intersections and pedestrian access points were missing these curb ramps and that individually identifying each missing curb ramp would be redundant, particularly given data from the Napa Countywide Pedestrian Plan (2016). Consequently, though some early reports do mention lack of accessible curb ramps, a universal recommendation was created to address this important pedestrian barrier while avoiding redundancy in reports.

- **Recommendation:** In alignment with the Americans with Disabilities Act, when implementing recommendations made in Napa County Safe Routes to School reports that impact the curb at intersections, pedestrian crossings, or other pedestrian access points, curb ramps that are compliant with the Americans with Disabilities Act should be installed.
APPENDIX C

Quick Build Brochure

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
Delivering Safer Streets in Weeks or Months, Instead of Years
How to Meet Public Demand for Safe Bikeway Networks—Affordably, Quickly, and Inclusively

WHY QUICK-BUILD? WHY NOW?

Biking is up in many communities in California, including those that started with low rates of bicycling, as people seek out healthy and safe transportation and recreation. Californians are discovering they can be healthier and happier simply by getting out on two wheels.

Meanwhile, agency budgets are down. Plans to spend millions on infrastructure may no longer be realistic. More than ever, the public demands that transportation projects are equitable and responsive to the needs of neglected communities.

Quick-build is a method of building bike and pedestrian safety improvements—protected bike lanes, pedestrian crossings, slow streets, parklets, and more—now, within your budget. In challenging times, quick-build projects are crucial to building trust in the government’s ability to deliver public benefit. And quick-build infrastructure can engage the public better than ever, and be more inclusive and equitable than traditional infrastructure.

CASE STUDY

Adeline Street in Berkeley got protected bike lanes 20 years ahead of schedule, when Bike East Bay worked closely with the city to incorporate planned lanes into the repaving schedule, saving time and money by simply adding bike infrastructure to an existing project, one funded through a local infrastructure bond measure. The City of Berkeley garnered extensive public input on the Adeline Corridor, making this a great example of quick-build speeding up existing bike infrastructure planning, bringing bike lanes to Berkeley in 2019 instead of 2039.

“We as transportation experts need to be thinking strategically about whether or not we need to spend three years talking about doing something important, or three weeks to just try something.”

— Warren Logan
Transportation Policy Director of Mobility and Interagency Relations at Oakland Mayor’s Office
WHAT IS QUICK-BUILD?

The Basics

• Quick-build projects use materials that can be installed quickly and at low cost. Build projects from posts, planters, and stripes of paint, not new pavement or curb alignments.

• **Quick-build projects are installed on a trial basis.** Temporary installations allow for adjusting or removing elements in response to public feedback. Successful projects may become permanent, exactly as installed, or upgraded with more durable materials.

• **Quick-build should incorporate rigorous community engagement.** A project on the ground can serve much more effectively than a PowerPoint or rendering for trying something out and allowing community residents to respond. Gather feedback and input, and change designs accordingly.

Materials

From paint, traffic cones, and A-boards to concrete curb barriers, planters, and temporary raised crosswalks, a wide variety of materials work well for creating quick-build projects. The full Quick-Build Toolkit provides thorough, detailed descriptions of materials that can make for an effective and inexpensive project to meet your community’s needs.

CASE STUDY

In August of 2020, the City of San Luis Obispo converted one of the three motor vehicle lanes of downtown Higuera Street into a buffered bike lane, as part of Open SLO, the city’s pilot program to expand the use of public spaces (with parklets and bike/ped spaces) during the COVID-19 pandemic. The project was installed with paint, took less than a week to install, and cost a mere $15K instead of the more than $150K it would have taken to put in a traditional bike lane by sealing and restriping the whole street as the city would normally do.

Photo credit: Bike SLO County
WHO?

Your Quick-Build Project Team

Team leader. Quick-build projects need a “chief” (usually city staff) tasked with project facilitation, keeping the momentum going, establishing lines of communication, and accepting and evaluating feedback.

Community leaders. Because evaluation and adjustment are essential for successful quick builds, make sure community leaders are on board from the beginning. Look to businesses, residential associations, places of worship, and nearby schools. Bring in bike/ped advocacy organizations and other CBOs, including those based in disadvantaged communities and led by people of color.

Department liaisons. Your project may impact transit, street sweeping, parking enforcement, maintenance, waste management and recycling, and emergency response. Involve other agencies as necessary to ensure you don’t forget a critical aspect.

Elected Officials. They have the power to marshal funding for quick-build projects. They will hear from constituents, so communication channels between the project team and electeds must be open for effective project evaluation.

Communications. Ideally, include a dedicated communications person on your team. Because this is a new method, and people are used to years of discussion, publicize quick-build’s temporary nature. Talk about the project’s intended benefits, and listen to feedback about the actual impacts.

Community Engagement

Community engagement is essential and also very effective, because it’s easy to engage people in providing feedback on real-world solutions that they can see and use. Here are the keys:

• Start engaging with the community before you install the project so that residents' opinions are included from the get-go.
• Be inclusive in your outreach, including perspectives from disadvantaged communities and people of color.
• Emphasize the project’s temporary nature, and the ability to change the project after it’s installed.
• Implement effective feedback mechanisms during the project, making sure to plan and budget for project adjustments in response to input.

CASE STUDY

The El Cajon Boulevard Business Improvement Association (“The Boulevard”) got city councilmembers and the mayor on board to fund a pilot bus and bike lane along a 3-mile stretch of San Diego’s El Cajon Boulevard. The Boulevard staff brought in diverse stakeholders and built on longstanding relationships to push the city to dedicate a lane for El Cajon Boulevard’s new bus rapid transit line, and got bikes included on this Vision Zero corridor. The entire three-mile project, which launched in January 2020, cost $100K, funded by San Diego’s general fund.

Photo credit: Holly Raines
WHERE?

Which Projects are Best for Quick-Build?

Some projects are better than others for the quick-build method.

- **Look to existing plans.** Your community’s current active transportation plan already identifies key improvements and priorities. Most such plans will take decades to complete with traditional methods and funding. Quick-build can take those plans to reality much sooner.

- **Fill gaps in the bikeway network, especially now when more people are bicycling.** Look to improve intersections that are dangerous to navigate, short sections of crosstown routes that use busy streets, or long sections of streets that could become “slow streets” to connect neighborhoods.

- **Put disadvantaged communities first.** If your plan doesn’t already incorporate an equity analysis to set priorities, this is your chance. Look at a model plan like Oakland's "Let’s Bike Oakland" bicycle plan which incorporates a framework of equity and a focus on improving well-being for the city’s most vulnerable groups.

If a project is funded and on schedule to be built within a year or two, turn your attention to projects that will take years without quick build. Projects that require expensive modifications—new traffic signals, bridges, reconfigured curbs—are not good quick-build candidates.

Funding for Quick-Build

POTENTIAL FUNDING SOURCES IN CALIFORNIA

Available funding for quick-build projects varies a lot from one municipality to the next. But here are a few ideas.

- **Public works departments’ essential repaving and repair projects are great opportunities to put in quick-build projects at low cost.**

- **Local and regional funds such as general fund, sales tax revenue, and Air Quality Management District funds can be used for quick-build projects.**

- **Tack on costs to another publicly-funded transportation project, or even a private project.** For example, a development project that is required to repave and stripe new bike lanes might install a protected bike lane using quick-build materials instead.

- **In 2020, the Active Transportation Program piloted a special quick-turnaround funding pot for quick-build projects, with an earlier (summer) deadline. Keep an eye on the ATP to see if they continue to offer this funding in future years. CalBike will be pushing them to do so.**

- **PeopleForBikes has a small grant program for infrastructure projects.**

- **AARP’s Community Challenge grant could fund a quick-build project.**

This resource was prepared in partnership with Alta Planning + Design. For more information see our complete Quick-Build Guide.
APPENDIX D

Bike Parking Guidance

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
ESSENTIALS OF BIKE PARKING
Selecting and installing bicycle parking that works

COLORS: LEGEND & SYMBOL — GREEN (RETROREFLECTIVE)
BACKGROUND — WHITE (RETROREFLECTIVE)
Essentials of Bike Parking
Revision 1.0, September 2015
© 2015 by Association of Pedestrian and Bicycle Professionals (APBP).

This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License. You may freely share, reproduce, excerpt, and build upon this work—provided that your work is not commercial and that you acknowledge the source.

Acknowledgments

Lead author - Nathan Broom
Contributors - Eric Anderson, Vince Caristo, Ryan Dodge, Jennifer Donlon-Wyant, Sarah Figliozzi, Elco Gauw, Dan Jatres, David Loutzenheiser, Heath Maddox, Brian Patterson, Cara Seiderman

Alta Planning + Design donated their expertise in the design and illustration of this guide. Cat Cheng, lead designer, Jillian Portelance, production designer.

Bicycle parking manufacturers and distributors shall not use APBP’s logo or imply product endorsement by APBP without express written permission from APBP.

APBP is an association of professionals who plan, implement and advocate for walkable and bicycle-friendly places.

Association of Pedestrian and Bicycle Professionals
bikeparking@apbp.org
www.apbp.org
Among the necessary supports for bicycle transportation, bike parking stands out for being both vital and easy. Still, it requires some attention to get it right. Bike parking may go unused if it’s not more appealing to users than the nearest sign post. A minor mistake in installation can make a quality rack unusable. The variety of bicycle sizes, shapes, and attachments continues to increase, and good bike parking should accommodate all types.

The Association of Pedestrian and Bicycle Professionals (APBP) prepared this guide for people planning to purchase or install bike parking fixtures on a limited scale. It is a brief overview of APBP’s comprehensive Bicycle Parking Guidelines handbook, available at www.apbp.org.

This guide divides bike parking into short-term and long-term installations. These two kinds of parking serve different needs, and the starting point for most bike parking projects is recognizing whether the installation should serve short-term users, long-term users, or both. If users will typically be parking for two hours or longer, they are likely to value security and shelter above the convenience and ease that should characterize short-term parking.
SHORT-TERM PARKING

Effective bike parking for short-term users depends on two main factors: 1) proximity to the destination and 2) ease of use.

Site Planning

Location

Short-term bike parking should be visible from and close to the entrance it serves—50’ or less is a good benchmark. Weather-protected parking makes bicycle transportation more viable for daily and year-round use, and it can reduce the motivation for users to bring wet bicycles into buildings. Area lighting is important for any location likely to see use outside of daylight hours.

Security

All racks must be sturdy and well-anchored, but location determines the security of short-term parking as much as any other factor. Users seek out parking that is visible to the public, and they particularly value racks that can be seen from within the destination. Areas with high incidence of bicycle theft may justify specific security features such as specialty racks, tamper-proof mounting techniques, or active surveillance.

Quantity

Many jurisdictions have ordinances governing bike parking quantity. APBP’s full Bicycle Parking Guidelines offers complete recommendations for the amount and type of parking required in various contexts. In the absence of requirements, it’s okay to start small—but be mindful that perceived demand may be lower than the demand that develops once quality parking appears.

BIKE CORRALS

Some cities with limited sidewalk space and strong bicycle activity place bike parking in on-street “bike corrals” located in the street area adjacent to the curb. Bike corrals can sometimes make use of on-street areas that are unsuitable for auto parking. When replacing a single auto parking space, a corral can generally fit 8 to 12 bicycles. APBP’s full Bicycle Parking Guidelines provides details about designing and siting bike corrals. apbp.org
LONG-TERM PARKING

Users of long-term parking generally place high value on security and weather protection. Long-term parking is designed to meet the needs of employees, residents, public transit users, and others with similar needs. These users typically park either at home or at a routine destination such as a workplace. They often leave their bicycles unmonitored for a period of several hours or longer, so they require security and weather protection that let them park without unreasonable concern for loss or damage.

Long-term parking can take a variety of forms, including a room within a residential building or workplace, a secure enclosure within a parking garage, or a cluster of bike lockers at a transit center. Some long-term parking is open to the public—such as a staffed secure enclosure at a transit hub—and some of it is on private property with access limited to employees, residents, or other defined user groups.

SITE PLANNING

Location

Appropriate locations for long-term parking vary with context. Long-term parking users are typically willing to trade a degree of convenience for weather protection and increased security. Long-term installations emphasize physical security above public visibility. Signage may be needed for first-time users.

Security

Security is paramount for quality long-term parking. Access to parked bicycles can be limited individually (as with lockers) or in groups (as with locked bike rooms or other secure enclosures). Options for access control include user-supplied locks, keys, smart cards, and other technologies.

Quantity

Refer to local ordinances or the comprehensive APBP Bicycle Parking Guidelines to determine the amount and type of parking required for various contexts.

SPECIAL CONSIDERATIONS FOR LONG-TERM PARKING

In many ways, short-term and long-term parking function similarly and are served by the same guidelines. Some exceptions are noted below.

Density

The competition of uses for high-security and sheltered locations creates particular pressure on long-term parking to fit more bicycles in less space. When parking needs cannot be met with standard racks and spacing recommended in this guide, consider rack systems designed to increase parking density. See the high-density racks table on page 7. Note that increasing density without careful attention to user needs can create parking that excludes people because of age, ability, or bicycle type. This may result in people parking bicycles in other less desirable places or choosing not to bike at all.

Bicycle design variety

Long-term parking facilities should anticipate the presence of a variety of bicycles and accessories, including—depending on context—recumbents, trailers, children’s bikes, long-tails, and others. To accommodate trailers and long bikes, a portion of the racks should be on the ground and should have an additional 36” of in-line clearance.

Performance criteria

The bike rack criteria in the next section apply to racks used in any installation, regardless of its purpose. Long-term installations often use lockers and group enclosures not discussed in this guide. Such equipment raises additional considerations that are discussed in detail in APBP’s full Bicycle Parking Guidelines. 🔄 apbp.org
INSTALLATION

Selective an appropriate installation surface and technique is key to creating bicycle parking that remains secure and attractive over time.

INSTALLATION SURFACE

A sturdy concrete pad is an ideal surface for installing bicycle parking. Other surfaces often encountered include asphalt, pavers, and soft surfaces such as earth or mulch. These surfaces can accommodate in-ground mounting or freestanding bike racks such as inverted-U racks mounted to rails. See APBP’s Bicycle Parking Guidelines for details. [apbp.org](http://www.apbp.org)

INSTALLATION FASTENERS

When installing racks on existing concrete, consider the location and select appropriate fasteners. Drill any holes at least three inches from concrete edges or joints. Some locations benefit from security fasteners such as concrete spikes or tamper-resistant nuts on wedge anchors. Asphalt is too soft to hold wedge and spike anchors designed for use in concrete. Installing bike parking on asphalt typically requires freestanding racks and anchor techniques specific to asphalt.

FASTENERS

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCRETE SPIKE</td>
<td>Installs quickly in concrete with a hammer. Tamper-resistant. Removal may damage concrete and/or rack.</td>
</tr>
<tr>
<td>CONCRETE WEDGE ANCHOR</td>
<td>Allows for rack removal as needed. Not tamper-resistant, but can accommodate security nuts (below).</td>
</tr>
<tr>
<td>SECURITY NUTS</td>
<td>Use with concrete wedge anchors. Security nuts prevent removal with common hand tools.</td>
</tr>
</tbody>
</table>

INSTALLATION TECHNIQUES

When installing racks on existing concrete, choose those with a surface-mount flange and install with a hammer drill according to the specifications of the mounting hardware selected. When pouring a new concrete pad, consider bike parking fixtures designed to be embedded in the concrete. Because replacing or modifying an embedded rack is complicated and costly, this installation technique requires particular attention to location, spacing, rack quantity, and material.
BICYCLE RACK SELECTION

PERFORMANCE CRITERIA FOR BIKE PARKING RACKS

These criteria apply to any rack for short- or long-term use.

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports bike upright without putting stress on wheels</td>
<td>The rack should provide two points of contact with the frame—at least 6” apart horizontally. Or, if a rack cradles a bicycle’s wheel, it must also support the frame securely at one point or more. The rack’s high point should be at least 32”.</td>
</tr>
<tr>
<td>Accommodates a variety of bicycles and attachments</td>
<td>The racks recommended on page 6 (“racks for all applications”) serve nearly all common bike styles and attachments—if installed with proper clearances (see placement section). Avoid designs and spacing that restrict the length, height, or width of bicycles, attachments, or wheels.</td>
</tr>
<tr>
<td>Allows locking of frame and at least one wheel with a U-lock</td>
<td>A closed loop of the rack should allow a single U-lock to capture one wheel and a closed section of the bike frame. Rack tubes with a cross section larger than 2” can complicate the use of smaller U-locks.</td>
</tr>
<tr>
<td>Provides security and longevity features appropriate for the intended location</td>
<td>Steel and stainless steel are common and appropriate materials for most general-use racks. Use tamper-resistant mounting hardware in vulnerable locations. Rack finish must be appropriate to the location (see materials and coatings section).</td>
</tr>
<tr>
<td>Rack use is intuitive</td>
<td>First-time users should recognize the rack as bicycle parking and should be able to use it as intended without the need for written instructions.</td>
</tr>
</tbody>
</table>
RACK STYLES

The majority of manufactured bike racks fall into one of the categories on pages 6-8. Within a given style, there is wide variation among specific racks, resulting in inconsistent usability and durability. APBP recommends testing a rack before committing broadly to it.

RACKS FOR ALL APPLICATIONS

When properly designed and installed, these rack styles typically meet all performance criteria and are appropriate for use in nearly any application.

INVERTED U
also called staple, loop

Common style appropriate for many uses; two points of ground contact. Can be installed in series on rails to create a free-standing parking area in variable quantities. Available in many variations.

POST & RING

Common style appropriate for many uses; one point of ground contact. Compared to inverted-U racks, these are less prone to unintended perpendicular parking. Products exist for converting unused parking meter posts.

WHEELWELL-SECURE

Includes an element that cradles one wheel. Design and performance vary by manufacturer; typically contains bikes well, which is desirable for long-term parking and in large-scale installations (e.g. campus); accommodates fewer bicycle types and attachments than the two styles above.
This guide analyzes the most common styles of bike racks, but it is not exhaustive. Use the performance criteria on page 5 to evaluate rack styles not mentioned. Custom and artistic racks can contribute to site identity and appearance, but take care that such racks don’t emphasize appearance over function or durability.

HIGH-DENSITY RACKS

These rack styles do not meet all performance criteria but may be appropriate in certain constrained situations.

High-density rack systems can maximize the use of limited parking space, but they don’t work for all users or bicycles. If installing these racks, reserve additional parking that accommodates bicycles with both wheels on the ground for users who are not able to lift a bicycle or operate a two-tier rack, or for bikes that are not compatible with two-tier or vertical racks.

STAGGERED WHEELWELL-SECURE

Variation of the wheelwell-secure rack designed to stagger handlebars vertically or horizontally to increase parking density. Reduces usability and limits kinds of bikes accommodated, but contains bikes well and aids in fitting more parking in constrained spaces.

VERTICAL

Typically used for high-density indoor parking. Not accessible to all users or all bikes, but can be used in combination with on-ground parking to increase overall parking density. Creates safety concerns not inherent to on-ground parking.

TWO-TIER

Typically used for high-density indoor parking. Performance varies widely. Models for public use include lift assist for upper-tier parking. Recommend testing before purchasing. Creates safety concerns not inherent to on-ground parking, and requires maintenance for moving parts.
Racks to Avoid

Because of performance concerns, APBP recommends selecting other racks instead of these.

Wave
also called undulating or serpentine

![Wave Rack](image)

Not intuitive or user-friendly; real-world use of this style often falls short of expectations; supports bike frame at only one location when used as intended.

Schoolyard
also called comb, grid

![Schoolyard Rack](image)

Does not allow locking of frame and can lead to wheel damage. Inappropriate for most public uses, but useful for temporary attended bike storage at events and in locations with no theft concerns. Sometimes preferred by recreational riders, who may travel without locks and tend to monitor their bikes while parked.

Coathanger

![Coathanger Rack](image)

This style has a top bar that limits the types of bikes it can accommodate.

Wheelwell

![Wheelwell Rack](image)

Racks that cradle bicycles with only a wheelwell do not provide suitable security, pose a tripping hazard, and can lead to wheel damage.

Bollard

![Bollard Rack](image)

This style typically does not appropriately support a bike’s frame at two separate locations.

Spiral

![Spiral Rack](image)

Despite possible aesthetic appeal, spiral racks have functional downsides related to access, real-world use, and the need to lift a wheel to park.

Swing Arm Secured

![Swing Arm Secured Rack](image)

These racks are intended to capture a bike’s frame and both wheels with a pivoting arm. In practice, they accommodate only limited bike types and have moving parts that create unneeded complications.
Most bicycle parking racks are made of carbon steel or stainless steel. Carbon steel requires a surface coating to resist rust while appropriate grades of stainless steel need no coating. Not all materials and coatings with the same name perform equally. Square tubing provides a security advantage as round tubing can be cut quietly with a hand-held pipe cutter. Before purchasing racks, talk to suppliers about your particular conditions and choose a material and coating that suit your needs. The following are common choices, depending on local considerations and preferences.

<table>
<thead>
<tr>
<th>RACK MATERIAL - COATING</th>
<th>RELATIVE PURCHASE COST</th>
<th>DURABILITY</th>
<th>CAUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon steel - galvanized</td>
<td>Usually lowest</td>
<td>Highly durable and low-maintenance; touch-up, if required, is easy and blends seamlessly</td>
<td>Utilitarian appearance; can be slightly rough to the touch</td>
</tr>
<tr>
<td>Carbon steel - powder coat* (TGIC or similar)</td>
<td>Generally marginally higher than galvanized</td>
<td>Poor durability</td>
<td>Requires ongoing maintenance; generally not durable enough for long service exposed to weather; not durable enough for large-scale public installations</td>
</tr>
<tr>
<td>Carbon steel - thermoplastic</td>
<td>Intermediate</td>
<td>Good durability</td>
<td>Appearance degrades over time with scratches and wear; not as durable as galvanized or stainless</td>
</tr>
<tr>
<td>Stainless steel - no coating needed, but may be machined for appearance</td>
<td>Highest</td>
<td>Low-maintenance and highest durability; most resistant to cutting</td>
<td>Can be a target for theft because of salvage value; maintaining appearance can be difficult in some locations</td>
</tr>
</tbody>
</table>

* When applied to carbon steel, TGIC powder coat should be applied over a zinc-rich primer or galvanization to prevent the spread of rust beneath the surface or at nicks in the finish.
When installing sidewalk racks, maintain the pedestrian through zone. Racks should be placed in line with existing sidewalk obstructions to maintain a clear line of travel for all sidewalk users.

Sidewalk racks adjacent to on-street auto parking should be placed between parking stalls to avoid conflicts with opening car doors.

The footprint of a typical bicycle is approximately 6' x 2'. Cargo bikes and bikes with trailers can extend to 10' or longer.

The following minimum spacing requirements apply to some common installations of fixtures like inverted-U or post-and-ring racks that park one bicycle roughly centered on each side of the rack. Recommended clearances are given first, with minimums in parentheses where appropriate. In areas with tight clearances, consider wheelwell-secure racks (page 6), which can be placed closer to walls and constrain the bicycle footprint more reliably than inverted-U and post-and-ring racks.
APPENDIX E

Recommendation
Cost Range Estimates

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
Appendix E: Recommendation Cost Range Estimates

Cost estimate was one of many factors considered when prioritizing recommendations for Napa County Safe Routes to School Walk Audit reports. Recommendations in which a high cost estimate would considerably delay implementation of the recommendation may have been given a lower priority level in order to prioritize recommendations that are lower cost and therefore more likely to be installed more quickly. Cost was considered on a high-level scale; real cost ranges of recommendations may differ from cost range estimates included in Walk Audit reports.

Cost range estimates for Safe Routes to School Walk Audit recommendations are as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>< $25,000</td>
</tr>
<tr>
<td>$$</td>
<td>Between $25,000 and $250,000</td>
</tr>
<tr>
<td>$$$</td>
<td>$250,000 to $1 million</td>
</tr>
<tr>
<td>$$$$</td>
<td>> $1 million</td>
</tr>
</tbody>
</table>
APPENDIX F

Next Steps

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
From Recommendations to Action: Next Steps

Napa County Bicycle Coalition (NCBC) has concluded the final task under the Napa County Safe Routes to School Program in coordination with the Napa County Office of Education, funded under the One Bay Area Grant and the Active Transportation Program.

Evaluation of active transportation barriers at school sites are complete and final reports of recommendations for each school in Napa County will be published in the spring of 2022. The NCBC team is already planning the next phase of Safe Routes to School that will help bring these recommendations into reality. Supported by a “Quick Strike” grant through the Metropolitan Transportation Commission (MTC), NCBC will continue its SRTS work over the course of this next year.

NCBC SRTS Quick Strike Program Elements (2022-2023):

- Engage parents in advocating for implementing the recommendations. Hold safety summits at various school sites that raise awareness of the recommendations and provide a forum for parents to discuss strategies and to plan next steps. Work with schools and other stakeholders to implement recommendations. Build a Safe Routes to School (SRTS) Advisory Committee, including “parent champions” from key school sites, to help guide the SRTS program into the next phase of growth and engagement and to help ensure the long-term viability of the program, providing a structure both for stakeholder feedback and input, as well as for increased local investment in future program activities.
 - **Action Steps:**
 - Hold up to seven safety summits at various school sites
 - Form SRTS advisory committee

- Provide education and encouragement programming at elementary and middle schools that includes bike rodeos throughout the year, Bike Month (and Bike to School Day) in the spring, and Walk and Roll to School Day in the fall. This programming aims to increase the number of students who walk or bike to school and to ensure that, as barriers are removed and facilities are improved, youth have the skills and confidence to take advantage of improvements.
 - **Action Steps:**
 - Hold up to 14 Bike Rodeos at elementary and middle schools
 - Provide outreach and support for Walk and Roll to School Day and Bike Month activities at up to seven school sites
 - Support local Agricultural & Hospitality Industry workers with bicycle safety education

- Conduct community-based safety education programming that reaches identified populations of concern. Through bilingual Family Biking Workshops, community rides in partnership with other local organizations, and safety education outreach to agricultural
and hospitality workers, NCBC will tailor our programming to help engage the full spectrum of our community.

- **Action Steps:**
 - Conduct up to nine bilingual Family Biking Workshops
 - Conduct up to six community events and rides

- **Secure future funding for the Safe Routes to School Partnership (SRTS).** We believe that every student should be able to safely walk or ride a bike to school. The SRTS program provides vital safety education, encouragement, and community engagement programs to thousands of students annually while advocating for facilities that make active transportation safe and accessible. SRTS will be a key force in helping to make the Walk Audit recommendations a reality. Napa County is one of the only counties in the region that lacks dedicated, long-term funding for these programs and efforts, and without that support implementing the recommendations will face more barriers.

 - **Action Steps:**
 - Apply for competitive and discretionary grant funding
 - Seek funding support from jurisdictions
 - Seek funding support from community health
 - Provide annual program reports to stakeholders