Walk Audit Report

ST. HELENA HIGH SCHOOL
EXISTING PLANS
SHUSD High Priority Project List/Funding Plan (2017)
NVTA Napa Countywide Bicycle Plan (2019)
NVTA Napa Countywide Pedestrian Plan (2021)
Caltrans District 4 (2018)
NVTA Napa Valley Countywide Transportation Plan: Advancing Mobility 2045 (2021)
St. Helena General Plan 2040 (2019)
GHD Active Transportation Plan (2021)
Farmstead at Long Meadow Ranch Lodging (2017)

WALK AUDIT FINDINGS

RECOMMENDATIONS
CONTEXT FOR RECOMMENDATIONS
MAP OF RECOMMENDATIONS
COLLISION MAP AND DATA

APPENDICES

FIGURES & MAPS REFERENCE

FOOTNOTES

ACKNOWLEDGEMENTS
NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM
NAPA COUNTY OFFICIALS
WALK AUDIT PARTICIPANTS
CITY STAFF
REPORT DESIGN

ST. HELENA HIGH SCHOOL
1401 GRAYSON AVENUE
ST. HELENA, CA

TABLE OF CONTENTS

ACKNOWLEDGEMENTS 3
NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM
SCHOOL OFFICIALS
WALK AUDIT PARTICIPANTS
CITY STAFF
REPORT DESIGN

EXECUTIVE SUMMARY 4
THE NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM
WHY SAFE ROUTES TO SCHOOL?
THE SIX E’S
REPORT PROCESS

ST. HELENA HIGH SCHOOL (SHHS) 7
SCHOOL SUMMARY
DATA
NEIGHBORHOOD CONTEXT

EXISTING CONDITIONS 10
SITE CIRCULATION
SCHOOL PARKING LOT AND GROUNDS
West Parking Lots
SR 29 Parking Lot
Back Parking Lots
BICYCLE AND PEDESTRIAN INFRASTRUCTURE
Map of Existing Bicycle Facilities
Map of Existing Pedestrian Facilities
POLICIES AND PROGRAMS
Encouragement and Education Enforcement

NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM
Napa County Bicycle Coalition
Madeline Oliver, Program Coordinator
Carlotta Sainato, Program Coordinator
Patrick Band, Executive Director
Kara Vernor, Executive Director

Napa County Office of Education
Grant Dinsdale, Community Programs Site Coordinator, Safe Routes to School
Willow Williams, Community Programs Outreach Coordinator
Christine Wedding, Community Programs Manager
Sara Sitch, Community Programs Director

Napa Valley Transportation Authority
Diana Meehan, Senior Planner

CITY STAFF
St. Helena Public Works
St. Helena Planning Department
St. Helena Fire Department
St. Helena Police Department

WALK AUDIT PARTICIPANTS
Brandon Forse, Student
Anne Gullung, Student
Sofia Osborne, Student
Avery Roberts, Student
Judith Rowlings, Parent
Aidan Schelhorn, Student
Jason Kelperis, Teacher, Interact Club Advisor

REPORT DESIGN
Ana Rizzo, Graphic Design
Amber Manfree, GIS Mapping

SCHOOL OFFICIALS
St. Helena Unified School District
Dr. Marylou Wilson, Superintendent
Benjamin Scinto, Principal
Jason Kelperis, Teacher, Interact Club Advisor

2 Walk Audit Report | 11.22.19
THE NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM

The Napa County Safe Routes to School (SRTS) Program is a partnership between the Napa County Office of Education (NCOE), Napa County Bicycle Coalition (NCBC) and Napa Valley Transportation Authority (NVTA). Since 2008, the Program has provided high-quality bicycle and pedestrian safety education and encouragement programs and has worked closely with the public agency and school stakeholders to make walking and bicycling safer and more accessible for children throughout Napa County.

According to 2015 California Office of Traffic Safety (OTS) data, the data available when the SRTS program was applying for grant funding, Napa County ranked 1st in per capita number of collisions of bicyclists under the age 15, 2nd in total fatal and injury-causing collisions, and 3rd in overall pedestrian collisions. According to the most recent OTS data (2018), Napa County ranked 8th for bicyclist collisions statewide (58 counties), 7th for speed-related collisions, and 6th for total fatal and injury-causing collisions. A decades-long decline in the number of students walking and biking to school, as well as increased awareness of the significant traffic congestion, air pollution, and related issues associated with students being driven to school galvanized local agency partners to expand the existing program.

In 2017, the Napa County SRTS program secured funding through the Caltrans Active Transportation Program (ATP) and One Bay Area Grant (OBAG) Cycle II programs to expand education programs and initiate a series of evaluations at each public school countywide. NCOE has been leading education and engagement programs under the current program, while NCBC has led evaluations of active transportation barriers at all 36 school sites.

WHY SAFE ROUTES TO SCHOOL?

Safe Routes to School is national initiative committed to increasing the number of students who walk or bike to school, and making it safe, convenient, and fun for kids to do so. In doing so, SRTS aims to improve kids’ safety and increase health and physical activity. Concerned by the declining number of students walking and biking to school over recent decades and the related long-term health and traffic consequences, Congress made federal funding available for SRTS programs nationwide in 2005. Since then, SRTS programs have been implemented at more than 14,000 schools in all 50 states.

Studies have linked SRTS programs to increased walking and biking to school1 and reduced pedestrian-motorist collisions2. This can lead to safer, healthier, and more focused students, while also benefitting local and school communities.

Regularly walking or biking increases children’s daily levels of physical fitness and improves their cardiovascular health3. Student health has been linked to improved academic performance4: When students walk or bike to school, their fresh air and exercise allow them to arrive refreshed, energized and ready to focus. Children have a greater sense of spatial awareness and knowledge when they are actively engaged in their transportation, allowing them to better recognize and navigate their neighborhoods independently5. Families are also provided with a low-cost transportation option that can significantly reduce their annual expenses. When a greater share of students walk or bike to school, local and school communities benefit too. Fewer cars being driven to school can improve the air quality of surrounding neighborhoods by decreasing air pollutant emissions and increase street safety through reduced traffic congestion and noise pollution. This can also improve campus safety and reduce circulation hazards around the school site. Walking or biking is a reliable form of transportation, which can reduce student absence and tardiness. By reducing the number of short-distance school bus trips, increased student walking and biking can also help school districts save funds by decreasing costly bus service.

THE SIX E’S

Safe Routes to School programs originally followed a comprehensive approach that addressed the “Five E’s” – education, encouragement, enforcement, evaluation, and engineering. In 2017, when the Napa County SRTS program obtained funding to perform Walk Audit evaluations, the “Five E’s” had recently been altered to add a sixth “E” – equity. In June 2020, after a significant portion of the Walk Audit evaluation work had been completed, the “Six E’s” framework was again altered, dropping enforcement and adding engagement. These changes were led by the Safe Routes to School National Partnership.

The current “Six E’s” framework is described below. Although enforcement is no longer one of the “Six E’s”, a brief definition of enforcement is included, as it was part of the approach used by the Napa County SRTS program during the majority of the Walk Audit evaluation process.

THE NAPA COUNTY SAFE ROUTES TO SCHOOL PROGRAM

The goal of the Walk Audit Report is to identify, evaluate, prioritize, and offer solutions to infrastructure and non-infrastructure barriers to students safely walking and biking to school in Napa County.

THE SIX E’S

Engagement

- Listen to community members and work with existing community organizations.

Equity

- Recognize the unique barriers that different people face in living healthy, fulfilled lives, and craft policies, programs, and overall approaches with those various challenges and needs in mind.

Engineering

- Design streets and schools for walkers and bikers to use safely and conveniently.

Encouragement

- Promote walking and biking in the school community through events, programs and incentives.

Education

- Ensure that everyone learns how to travel safely and why biking and walking are important.

Evaluation

- Track progress toward our shared safety goals, develop programs accordingly.

Enforcement (no longer an “E”):

- Enforce traffic safety laws and school policies and target risky behaviors. No longer recommended as foundational to the start, maintenance, or growth of Safe Routes to School programs.
REPORT PROCESS
The SRTS team conducted a comprehensive evaluation of the barriers to students walking and biking to and from St. Helena High School over the course of 2 years, starting in the summer of 2018. Information on physical and behavioral challenges was collected in two phases. In September 2018, the SRTS team completed an initial infrastructure audit of the school site and the surrounding neighborhood within a half-mile of the school. SRTS team members walked and rode bicycles throughout the school neighborhood, taking photographs of barriers and logging them into Fulcrum, a GPS-enabled data collection smartphone app.

In November 2019, a Community Walk Audit brought parents, staff, and students together to discuss school conditions and behaviors during pick-up and drop-off times, identify safety and convenience barriers for students walking and biking to school, prioritize issues, and brainstorm solutions. These two tasks resulted in an inventory of infrastructural barriers at and around the school site as well as a list of stakeholder-identified challenges.

A report draft was shared with the Napa Valley Transportation Authority, the Napa County Office of Education, law enforcement, public works and planning representatives from the City of St. Helena, the local school district, and school stakeholders, and their feedback was incorporated into the final version. As part of the larger countywide project, the SRTS team engaged EMC Research, a national public opinion research firm to conduct a comprehensive survey of parents’ perceptions around walking and biking to school (see Appendix A). The Walk Audit report outlines the information gathered during this multi-year process and provides recommendations for improvements.

ST. HELENA HIGH SCHOOL (SHHS) SCHOOL SUMMARY

Principal: Benjamin Scinto
Grades: 9-12
First Bell: 8:18 AM
Enrollment: 482
Last Bell: 3:22 PM
Street: 1401 Grayson Avenue
District: St. Helena Unified
City: St. Helena, CA 94574
Overall Facility Rating: Good
DATA

No data is currently available regarding the number of students who regularly walk and bike to the school. The school’s principal reported that there are normally at least ten bikes on the bike rack; however, the number of students living within walking distance of the school has been decreasing in recent years. Additional work is needed to establish a baseline of active transportation use for this school.

Data collected from the countywide EMC Research survey (Appendix A) conducted in Spring 2021 reflects parent perspectives on walking and biking to school for K-8 students only, and therefore cannot be applied to St. Helena High School.

**Total Enrollment by Group (2019-20)**

<table>
<thead>
<tr>
<th>ETHNICITY</th>
<th>ST. HELENA HIGH SCHOOL</th>
<th>DISTRICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black or African American</td>
<td>0.6%</td>
<td>0.4%</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>1.0%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Asian</td>
<td>1.0%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Filipino</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>49%</td>
<td>51.6%</td>
</tr>
<tr>
<td>White</td>
<td>47.9%</td>
<td>45.1%</td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Two or More Races</td>
<td>0.2%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Not Reported</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

**Student Enrollment by Grade Level (2019-2020)**

<table>
<thead>
<tr>
<th>Grade</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 9</td>
<td>118</td>
</tr>
<tr>
<td>Grade 10</td>
<td>125</td>
</tr>
<tr>
<td>Grade 11</td>
<td>122</td>
</tr>
<tr>
<td>Grade 12</td>
<td>117</td>
</tr>
<tr>
<td>Total</td>
<td>482</td>
</tr>
</tbody>
</table>

NEIGHBORHOOD CONTEXT

St. Helena High School is located in south St. Helena on the corner of Grayson Avenue, a residential street, and SR 29, a state highway and regional connector.

To the south, the school is bordered by vineyards and Salvestrin Winery. To the west is Crane Park, St. Helena Primary School, and a small handful of single-family residences. North of the school are more vineyards, a row of medium- and high-density residences, and some small service commercial space, including Davies Vineyards winery and A&W restaurant. This residential area includes both single- and multi-family residences, which were mainly built in the 1940s and 1950s. East of the school, across SR 29, are more service commercial spaces, a small industrial area, and agricultural land. Further northwest of the school, beyond an industrial patch, are several more single-family residences, which were primarily built in the 1950s to 1970s.

Destinations of interest within walking distance of St. Helena High School include A&W, Azteca Market, Gotts Roadside, and Sunshine Foods Market, which are all located north of the school along SR 29.
**EXISTING CONDITIONS**

The Safe Routes to School Team conducted an initial evaluation of the school site and the surrounding area prior to conducting the Community Walk Audit. The Fulcrum App software was used to map and record significant point and segment issues within a half-mile range of the school. The team also collected information on local and school transportation policies and programs from conversations with the school’s staff and administrators, as well as documents from the school and City websites. Prior to circulation of the draft report among partners, the team conducted an additional site visit to confirm conditions.

**SITE CIRCULATION**

St. Helena High School is an open campus with little fencing around it; as a result, there are several access points to the school for motorists, pedestrians, and bicyclists. Most of these access points are along Grayson Avenue, and some are along SR 29. Grayson Avenue can only be accessed from SR 29 and Valley View Street/South Crane Avenue, which also provide the only direct routes north towards the bulk of the residential area and the downtown area. This makes SR 29 and Valley View Street significant roads to consider when evaluating student travel to and from school.

There is a small loading zone in front of the main office on eastbound Grayson Avenue, marked by a yellow curb and offset from the travel lane, with signs that prohibit U-turns to and from the loading zone. Motorists can also park or drop-off students on the rest of Grayson Avenue along the unpainted curb or off of SR 29 via a parking lot and semi-circle. There is limited vehicle access beyond the semi-circle off of SR 29 that runs along the south edge of campus. The bulk of student drop-off occurs along Grayson Avenue near the front of the school, and in the semi-circle off of SR 29.

There is a small loading zone in front of the main office on eastbound Grayson Avenue, marked by a yellow curb and offset from the travel lane, with signs that prohibit U-turns to and from the loading zone. Motorists can also park or drop-off students on the rest of Grayson Avenue along the unpainted curb or off of SR 29 via a parking lot and semi-circle. There is limited vehicle access beyond the semi-circle off of SR 29 that runs along the south edge of campus. The bulk of student drop-off occurs along Grayson Avenue near the front of the school, and in the semi-circle off of SR 29.

South Crane Avenue has one general entrance to campus (left). The sidewalks on Grayson Avenue branch off to provide a safe pedestrian path to campus (right).

Pedestrians and bicyclists can access the school from several locations along Grayson Avenue and SR 29 (see image outlining access points). Pedestrians and bicyclists entering from SR 29 must navigate through traffic in the east parking lot off of SR 29 and the semi-circle, as there is no separated pedestrian or bicyclist path leading to the school’s campus. Since the majority of St. Helena residences are north of the school, most student pedestrians and bicyclists enter campus on Grayson Avenue.

The school does not provide students and parents with a formal circulation plan or policy. The following passage regarding bicycles is included in the school’s Student Handbook:

**SKATEBOARDS, SCOOTERS, BICYCLES, SPACESHIPS, eBIKES, ETC.**

Use of the above-listed items are prohibited on campus. If violated, items will be confiscated and used as props in Ms. Coyle’s drama productions. Bicycles should be locked during school hours. Bikes are considered personal property and fall under the same guidelines as listed in the above category.”

Figure 3: Bicycle Policy

The St. Helena Unified School District used to contract with the Napa Valley Unified School District to provide limited bus service to SHUSD students, which included service to St. Helena High School. Following school bus driver shortages, SHUSD worked with a consultant to develop and implement their own transportation program beginning during the 2020-21 school year. As of the 2021-22 school year, SHUSD is contracting with Michael’s Transportation for bus drivers. As the school district continues to recruit drivers, routes are sometimes temporarily cancelled based on capacity; the district alternates which route is cancelled when cancellations last longer than one day.

All students must submit a completed application form and ridership agreement form to ride the bus. Four bus routes serve all of the schools in the district, though one of them (the College Avenue Short Route/Local Route) is for assigned students only. These bus routes serve students in the city of St. Helena, Lake Berryessa, and Angwin and Deer Park. Buses pick up and drop off SHHS students in the semi-circle off of SR-29.

Though extremely faded, there is a lane for student drop-off and a lane for bus drop-off in the semi-circle off of SR 29.

The St. Helena Shuttle, which provides both fixed and on-demand services within the City of St. Helena, also stops at the high school on Grayson Avenue as part of its morning and afternoon Fixed Routes. There are also two Vine public bus stops near the high school as part of the Route 10 Up Valley Connector: a northbound bus stop on SR 29 near Dowdell Lane and a southbound bus stop on SR 29 near the high school parking lot. The southbound bus stop has a shelter and bench and is accessible by a sidewalk. The northbound bus stop has only the bus stop sign and does not have any sidewalks providing access to the stop or crosswalks to get across SR 29.

Southbound (left) and northbound (right) Vine bus stops in front of the high school.
SCHOOL PARKING LOT AND GROUNDS

St. Helena High School has four primary parking lots in addition to ample street parking along eastbound Grayson Avenue. There is little parking along westbound Grayson Avenue, as it is prohibited in areas where there are no sidewalks.

WEST PARKING LOTS
The westmost parking lot is located between the football field and the baseball field, and also serves neighboring Crane Park. Though this lot is large, it is the farthest walking distance from the central campus.

East of that lot, on the other side of the football field, is the student parking lot. The student parking lot has 33 perpendicular parking stalls, including two stalls compliant with the Americans with Disabilities Act (ADA), and has sidewalks along all sides of it, so that students can walk around the parking lot without interacting with traffic. Both of these lots only have one driveway each, requiring motorists to enter and exit the lots on Grayson Avenue.

SR 29 PARKING LOT
The east parking areas, accessed by SR 29, are the second student parking lot and the semi-circle parking lot. The second student parking lot contains about 50 perpendicular parking stalls, while the semi-circle, which is designated staff parking, contains just under 50 parking stalls. To reach campus from the SR 29 student parking lot, students must either walk through the semi-circle parking lot where there is no pedestrian path or walk to Grayson Avenue. Motorists can enter the student lot via one of two driveways off of SR-29. To access the semi-circle, motorists must drive through the student lot to the north entrance of the semi-circle, and travel in a counterclockwise direction.

BACK PARKING LOTS
West of the semi-circle is another small parking lot, containing roughly 22 stalls, that serves school and district staff. A small road leading off of the semi-circle leads to a few, small parking areas along the south border of the school — these areas are also used by school staff only.

The school addresses student parking in its Student Handbook, provided annually to all students and available on the school website:

STUDENT PARKING: Student parking is along Grayson Avenue, the lot to the North of the Field House, and in the lot bordering Main Street. Students are not to park in the half circle in front of Vintage Hall, in the yellow zone in front of the office, or in the red zone or handicap spaces by the Field House.

Cars will be towed at the students’ expense.

BICYCLE AND PEDESTRIAN INFRASTRUCTURE

Very little bicycle infrastructure exists around St. Helena High School. Valley View Street has green Class II bike lanes from Grayson Avenue to just south of Birch Avenue. A narrow shoulder along SR-29 provides a route for students who do not meet Class II standards. The shoulder narrows significantly in some locations, particularly north of the school heading toward downtown, requiring riders to merge with highway traffic to avoid being unsafely passed by vehicles. All other streets around the school do not have bicycle facilities.

Pedestrian infrastructure around the school generally improves north of the school but disappears south of the school.

SR 29 has shoulders on both sides of the road that are sometimes used by bicyclists, though they do not meet Class II bike lane standards, as they do not meet Class II standards. The shoulder narrows significantly in some locations, particularly north of the school heading toward downtown, requiring riders to merge with highway traffic to avoid being unsafely passed by vehicles. All other streets around the school do not have bicycle facilities.

Valley View Street, providing the only alternative route to SR 29 that leads north into the heart of the City, has only one sidewalk on the northbound side until about halfway across the bridge over Sulphur Creek, where the southbound sidewalk begins. This southbound sidewalk is not accessible from the Grayson Avenue intersection and there is no crosswalk to the northbound sidewalk when the southbound sidewalk ends. South of Grayson Avenue, Valley View Street becomes South Crane Avenue, which has one narrow sidewalk on its northbound side that ends at Crane Park. Desire paths in the dirt along South Crane Avenue beyond Crane Park indicate pedestrian use.

South of Grayson Avenue eastbound sidewalk in front of SHPS.

Grayson Avenue has only one complete sidewalk on the eastbound side, the same side the school is on. Westbound Grayson Avenue has a narrow sidewalk from SR 29 to just before the school’s main office, which covers about a fifth of the road’s westbound side. There is a midblock crosswalk with Rectangular Rapid Flashing Beacons about 175 feet before the sidewalk ends, providing a marked location for students to cross Grayson Avenue to reach the campus.

Valley View Street, providing the only alternative route to SR 29 that leads north into the heart of the City, has only one sidewalk on the northbound side until about halfway across the bridge over Sulphur Creek, where the southbound sidewalk begins. This southbound sidewalk is not accessible from the Grayson Avenue intersection and there is no crosswalk to the northbound sidewalk when the southbound sidewalk ends. South of Grayson Avenue, Valley View Street becomes South Crane Avenue, which has one narrow sidewalk on its northbound side that ends at Crane Park. Desire paths in the dirt along South Crane Avenue beyond Crane Park indicate pedestrian use.

SR 29 has one sidewalk on the southbound side that stretches both north and south of the school. South of the school, the sidewalk ends at the edge of the student parking lot. A dirt path replaces the sidewalk to El Bonita Avenue, where pedestrian access ends; desire lines in this dirt path indicate pedestrian use. North of the school, the southbound sidewalk is the only sidewalk along SR 29 until Charter Oak Avenue, where a high-visibility crosswalk and Rectangular Rapid Flashing Beacons connect the southbound and northbound sidewalks. The southbound sidewalk is the most direct route into downtown St. Helena from the school, but requires walking alongside highway traffic.

Figure 4: Student Parking Policy
BICYCLE AND PEDESTRIAN INFRASTRUCTURE (continued)

Along Grayson Avenue, there are three locations for pedestrians and bicyclists to cross the street: at Valley View Street and South Crane Avenue, which is controlled by a three-way stop, at a midblock crosswalk with Rectangular Rapid Flashing Beacons in front of the school’s library, and at the Grayson Avenue and SR 29 intersection, which is controlled by a traffic light and only has one crosswalk across Grayson Avenue.

The school provides one bike parking rack near its main office entrance on Grayson Avenue. The rack is positioned against a small brick wall, so half of the parking spaces are unavailable for use. The rack is not bolted to the sidewalk, leaving it and the bikes vulnerable to theft and/or vandalism, and there are no lighting structures nearby.

St. Helena High School bike parking is located next to the school’s main office.

MAP OF EXISTING BICYCLE FACILITIES

Map 3: Existing Bicycle Facilities
(Map source: Napa Valley Transportation Authority Napa Countywide Bicycle Plan (2019).)
POLICIES AND PROGRAMS

Encouragement and Education:

In recent years, St. Helena High School has participated in the two annual countywide encouragement events: Bike to School Day and Walk and Roll to School Day. These events are facilitated by Napa County Safe Routes to School and celebrate students making the healthy choice to bike, walk, or roll to school. The school’s encouragement program is limited to these annual events. The school does not provide regular on-campus bicycle or pedestrian safety education to students.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>EVENT</th>
<th>STUDENT PARTICIPANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017/18</td>
<td>Bike to School Day</td>
<td>20</td>
</tr>
<tr>
<td>2018/19</td>
<td>Walk and Roll to School Day</td>
<td>40</td>
</tr>
<tr>
<td>2018/19</td>
<td>Bike to School Day</td>
<td>12</td>
</tr>
<tr>
<td>2019/20</td>
<td>Walk and Roll to School Day</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 5: Encouragement and Education Data
St. Helena Police Department provided citywide enforcement data for 2014 to 2019 on violations for passing a school bus, speeding, failing to stop at a stop sign, and failing to yield to pedestrians. Data on roads around the school and along significant pedestrian and bicyclist travel routes to the school were selected for analysis. For St. Helena High School, this included SR 29 from Dowdell Lane to Pope Street/Mitchell Drive, Grayson Avenue, Valley View Street, Sulphur Springs Avenue, and South Crane Avenue.

For the examined time period, there were 7 citations for passing a school bus on Main Street just south of the school zone (at El Bonita Avenue and Vintage Avenue). There were 19 citations for failing to stop at a stop sign, most of which occurred around the intersection of Grayson Avenue and South Crane Avenue/Valley View Street. There was one citation for failing to yield to a pedestrian at Main Street and Mitchell Drive.

Most significant of the provided enforcement data was the speeding data – there were 164 citations of speeding, the majority of which occurred either on Sulphur Springs Avenue or Main Street, especially between Grayson Avenue and Pope Street/Mitchell Drive. Speeding along Main Street is a notable issue, as Walk Audit participants identified the inability to cross SR 29 as a major barrier to taking active transportation to school.

CITATIONS IN SCHOOL AREA BY TYPE

Enforcement:

**Figure 6: Citations by Type**

<table>
<thead>
<tr>
<th>Violation</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speeding</td>
<td>164</td>
</tr>
<tr>
<td>Yielding to Pedestrians</td>
<td>1</td>
</tr>
<tr>
<td>Passing a School Bus</td>
<td>7</td>
</tr>
<tr>
<td>Stop required</td>
<td>29</td>
</tr>
</tbody>
</table>

**Figure 7: Speeding Citations**

SPEEDING CITATIONS

<table>
<thead>
<tr>
<th>Year</th>
<th>Main Street</th>
<th>Sulphur Springs Avenue</th>
<th>South Crane Avenue</th>
<th>Grayson Avenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2016</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2017</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>2018</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>2019</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

EXISTING PLANS

NVTA Napa Countywide Bicycle Plan (2019):
The Countywide Bicycle Plan lists several recommended improvements around St. Helena High School. A Class I shared-use path is recommended for the entire Grayson Avenue corridor. SR 29 is a designated study corridor from the southern City limit to Grayson Avenue and is proposed to be part of the regional Class I Vine Trail shared-use path. From Grayson Avenue to Mitchell Drive, SR 29 is recommended for Class II bike lanes and a Class III Bike Route. South Crane Avenue and Sulphur Springs Avenue north of South Crane Avenue are recommended for Class II bike lanes. Class I shared-use paths that cut through the middle of large blocks are proposed both south of the school, connecting with Sulphur Springs Road, and north of the school, connecting with Oak Avenue. The proposed Oak Avenue Class I shared-use path is a designated study corridor as part of the regional Vine Trail alignment. Valley View Street north of Birch Avenue is recommended for Class III bike boulevards.

SHUSD High Priority Project List/Funding Plan (2017):
According to the most updated version of SHUSD’s High Priority Project List/Funding Plan created in December 2017, the only future major project for St. Helena High School that could impact site circulation and transportation is a slurry/striping/asphalt project for the entire site.

NVTA Napa Countywide Pedestrian Plan (2016):
The majority of the Pedestrian Plan’s improvements for St. Helena are along SR 29. Near the school, proposed improvements include installing a sidewalk along SR 29 from Grayson to Dowdell Lane, which has been completed, installing a decomposed granite pathway along SR 29 from Dowdell Lane to El Bonita Avenue, and relocating the bus stop at Dowdell Lane to improve transit access. A Class I shared-use path is also proposed to run along Sulphur Creek, which would provide a separated bicycle and pedestrian route from east St. Helena to Valley View Street.

Caltrans District 4 (2018):
The Caltrans District 4 Bicycle Plan lists bicycle improvements at the intersection of SR 29 and Mitchell Drive/Pope Street, about a half-mile north of the school. These improvements include bike boxes, green markings, and a bike through offset intersection of Mitchell Drive/Pope Street at SR 29.

Farmstead at Long Meadow Ranch Lodging (2017):
Farmstead at Long Meadow Ranch Lodging is a planned 65-unit lodging facility located on Mills Lane, across SR 29 from the high school. Design plans include realigning Mills Lane to create a four-way intersection with SR 29 and Grayson Avenue. At the time of this report, it is unclear if any pedestrian and bicyclist improvements will be included in this realignment.
The NVTA Countywide Transportation Plan is a long-range plan of countywide transportation priorities that provides a direction for the four- to five-year plan while considering a 25-year planning horizon. This plan is part of the regional planning process for the Regional Transportation Plan by the Metropolitan Transportation Commission. There are 15 projects by the City of St. Helena listed in the Plan – most of the multimodal projects focus on improvements to the downtown Main Street corridor or construction of Class I bikeways. Projects closest to the school area include the extension of Oak Avenue, extension of Mills Lane and improvements to the existing Mills Lane, and a Sulphur Creek Class I Bikeway. NVTA projects that impact the City of St. Helena include construction of the Class I Vine Trail and expanded service hours and enhanced frequency of regional route 10.

The St. Helena General Plan 2040 (2019) states that the unifying goal of 1993 Plan “to protect the rural, small town quality and agricultural character of St. Helena” remains a primary focus of the 2040 General Plan while the Plan also integrates new topics such as sustainability, local mobility, heritage tourism, and local mobility through active transportation. The circulation element describes benefits of a shift from automobile-based transportation to alternative transportation and organizes policies and implementing actions in topic areas including; Balanced and Multimodal System; Safe, Accessible, and Comprehensive Bicycle and Pedestrian Network; Sustainable Mobility Practices; Safe and Well-Maintained Circulation System; Parking; and Improvements and Phasing.

GHD Active Transportation Plan (2021): In 2021, the City of St. Helena adopted a contract with GHD to develop a two-phase active transportation safety project. Phase I focuses on the Madrona Avenue and Spring Street corridors and Phase II focuses on a citywide Active Transportation and Safe Routes to School Plan. At the time of this report, the project is in Phase I and recommendations for the Madrona and Spring corridors are being developed.

The Community Walk Audit brought together five members of the school’s Interact Club, a staff member, and a parent to observe existing conditions during drop-off time, identify barriers to safe walking or biking, and explore solutions. The Walk Audit procedure was modified and divided into two sessions to fit the needs and schedule of the school and participants.

During the first session, the group met 45 minutes prior to the school bell for a brief presentation on the SRTS program and the process and purpose of Walk Audits. The team then walked out to the front of the school, east on Grayson Avenue to the intersection with SR 29, and back west on Grayson Avenue to the student parking lot. During this walk, participants observed and discussed the physical infrastructure around the school as well as the behavior of motorists, pedestrians, and bicyclists in the school site area. They also shared their own experiences traveling to and from school on foot and by car. Fifteen minutes before the bell, the team returned to the classroom to discuss their observations, map issue areas, and record and prioritize the major barriers identified during the exercise.

During the prioritization exercise, participants wrote down several barriers that were of high priority to them on sticky notes, placed them on a poster, and organized them into sections based on similar topics. Then, participants were given five round stickers to place on issues that they felt were most important and needed to be solved most urgently. Participants could spread their stickers out or put multiple stickers on one issue. After barrier prioritization, student and staff participants left for class. The parent participant explored and suggested solutions to identified barriers with the SRTS team.

On Wednesday, December 4th, the SRTS team returned to St. Helena High School with the identified barriers and the solutions suggested by the parent participant to conduct the second session. The rest of the Walk Audit group reviewed the major barriers and explored potential solutions to each issue. Participants repeated the prioritization process with potential solutions to the barriers identified.
This section of the report lists the barriers and solutions identified by Walk Audit participants during the Walk Audit activity. The barriers and treatments listed in the following tables are the results of the Walk Audit prioritization activities – the content and language used reflect what Walk Audit participants wrote on their sticky notes.

The barrier identification and prioritization exercise resulted in a list of location-specific and geographically general barriers and solutions, organized by Vote Score in the tables below. Vote Score was determined during the prioritization exercise by the number of stickers and sticky notes addressing a particular issue, with a higher number correlating to a higher Vote Score, indicating a higher importance to Walk Audit participants.

### Stakeholder-Identified Barriers:

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>LOCATION</th>
<th>VOTE SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of pedestrian visibility</td>
<td>Midblock crossing on Grayson Ave</td>
<td>9</td>
</tr>
<tr>
<td>Poor road conditions</td>
<td>Grayson Ave</td>
<td>8</td>
</tr>
<tr>
<td>No crosswalk</td>
<td>SR 29 at Grayson Ave</td>
<td>7</td>
</tr>
<tr>
<td>Unsafe circulation conditions</td>
<td>Grayson Ave</td>
<td>5</td>
</tr>
<tr>
<td>Crossing outside of crosswalks</td>
<td>School site area</td>
<td>4</td>
</tr>
<tr>
<td>No bike lanes</td>
<td>Grayson Ave</td>
<td>4</td>
</tr>
<tr>
<td>School administration support</td>
<td>General</td>
<td>3</td>
</tr>
<tr>
<td>Lack of cohesive transportation network and management</td>
<td>Citywide</td>
<td>3</td>
</tr>
<tr>
<td>Car-centric culture</td>
<td>General</td>
<td>2</td>
</tr>
<tr>
<td>Overgrown foliage</td>
<td>Grayson Ave</td>
<td>1</td>
</tr>
<tr>
<td>Poor road conditions</td>
<td>Crane Ave, Sulphur Springs Ave</td>
<td>1</td>
</tr>
<tr>
<td>Unsafe conditions</td>
<td>Student parking lot</td>
<td>1</td>
</tr>
<tr>
<td>Speeding</td>
<td>Grayson Ave</td>
<td>1</td>
</tr>
<tr>
<td>Lack of designated drop-off zone</td>
<td>Grayson Ave</td>
<td>1</td>
</tr>
</tbody>
</table>

### Stakeholder-Identified Treatments:

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>BARRIER ADDRESSED</th>
<th>LOCATION</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected bike lane network</td>
<td>No bike lanes, disconnected active transportation network</td>
<td>Citywide</td>
<td>9</td>
</tr>
<tr>
<td>Develop circulation plan</td>
<td>Unpredictable road user behavior in school zone</td>
<td>General</td>
<td>7</td>
</tr>
<tr>
<td>School lockers</td>
<td>Cars used as substitute locker</td>
<td>General</td>
<td>6</td>
</tr>
<tr>
<td>Improve pedestrian crossing</td>
<td>Missing crosswalk/existing low-visibility crosswalk</td>
<td>SR 29 at Grayson Ave</td>
<td>6</td>
</tr>
<tr>
<td>Environmental awareness campaign</td>
<td>Car-centric transportation culture</td>
<td>General</td>
<td>5</td>
</tr>
<tr>
<td>Bike lanes</td>
<td>No bike lanes</td>
<td>Grayson Ave</td>
<td>3</td>
</tr>
<tr>
<td>Improved bike parking</td>
<td>Not enough bike parking</td>
<td>General</td>
<td>3</td>
</tr>
<tr>
<td>Add sidewalk</td>
<td>No sidewalk</td>
<td>South Crane Ave</td>
<td>2</td>
</tr>
<tr>
<td>Increased bicycle signage</td>
<td>Not enough bicycle facilities/awareness of bicycle facilities</td>
<td>General</td>
<td>2</td>
</tr>
<tr>
<td>Parking fees/permits</td>
<td>Car-centric transportation culture</td>
<td>General</td>
<td>2</td>
</tr>
<tr>
<td>Re-design drop-off zone</td>
<td>Unpredictable road user behavior in school zone</td>
<td>Grayson Ave</td>
<td>2</td>
</tr>
<tr>
<td>Pedestrian/driver encouragement and education programs</td>
<td>Car-centric transportation culture, unsafe/unpredictable road behaviors, speeding</td>
<td>General</td>
<td>2</td>
</tr>
<tr>
<td>Rectangular Rapid Flashing Beacons</td>
<td>No crosswalk, poor motorist yielding behavior</td>
<td>SR 29 at Grayson Ave</td>
<td>1</td>
</tr>
<tr>
<td>Protected bike lane</td>
<td>Vehicle/bicycle conflict risk with existing bike lanes</td>
<td>Valley View</td>
<td>1</td>
</tr>
<tr>
<td>Multi-use paths</td>
<td>Disconnected active transportation network, areas of vehicle/bicycle conflict risks</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>Pedestrian scale lighting</td>
<td>Not enough lighting</td>
<td>Grayson Ave crosswalk</td>
<td>1</td>
</tr>
<tr>
<td>Student incentives</td>
<td>Car-centric transportation culture</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>Crosswalk</td>
<td>Not enough crosswalks in school zone</td>
<td>Grayson Ave, front of school</td>
<td>1</td>
</tr>
<tr>
<td>Repaving</td>
<td>Poor road quality</td>
<td>Grayson Ave</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 10: Walk Audit Ratings - Dot Exercise (Barriers)

Figure 11: Walk Audit Ratings - Dot Exercise (Solutions)
**IMPACT OF BARRIERS/HAZARDS ON COMMUNITY**

Barriers to safe walking and bicycling, both infrastructure and non-infrastructure, can greatly discourage communities from engaging in active transportation. The quality, accessibility, and connectivity of bicyclist and pedestrian travel networks strongly influence the rates of walking and bicycling as a mode of daily transport. Public policies and attitudes, such as traffic-calming measure enforcement and parking limitations, also contribute to the efficacy of pedestrian/bicyclist networks. Thus, barriers to accessibility and connectivity must be addressed in order to encourage increased and safe walking and cycling.

Barriers that discourage walking and bicycling prevent communities from gaining the health benefits offered by active transportation. For children, physical activity can improve cognitive function, bone health, cardiorespiratory and muscular fitness, and mental wellness. Adults benefit from lower risk of cardiovascular disease, hypertension, dementia, anxiety, and falls for older adults, as well as improved quality of life, physical function, bone health, and sleep.

However, only about 26% of men, 19% of women, and 20% of adolescents are meeting the aerobic and muscle-strengthening guidelines developed by the Department of Health. Increased walking and bicycling to school can help boost that percentage by incorporating physical activity into one's daily routine and encouraging further active transportation choices.

Lack of safe bicycle/pedestrian facilities can also negatively impact the environment, as more people will choose to drive rather than walk or ride. Passenger cars and light-duty trucks produced over half of the transportation sector emissions in 2017. Furthermore, transportation emissions have increased around 400 million metric tons since 1990 due to increased vehicle demand. Thus, decreasing vehicle use by creating bicycle/pedestrian networks that are safe from potential hazards and barriers can help mitigate these environmental effects.

In addition to the consequences already discussed, barriers to safe walking and bicycling can lead to increased collisions and conflicts between motorists, pedestrians, and bicyclists. Safety barriers can lead to more people choosing to drive, even if the destination is within walking or biking distance, increasing traffic congestion. Children have fewer opportunities to develop their sense of independence through walking and biking to school, and the community is hindered from enjoying the social and economic benefits of bicycling and walking. Safety barriers and hazards that discourage increased walking and bicycling can considerably impact many different parts of a community, which is why it is so crucial to address and resolve them.

**RECOMMENDATIONS**

Recommendations were determined by Napa County Safe Routes to School staff, taking into account the feedback and results from the Walk Audit activity, Fulcrum data, existing plans, and local stakeholder input. Priority levels for recommendations were calculated through consideration of vehicle, pedestrian, and bicyclist traffic volumes; vehicular traffic speed; collision history; presence of existing bicycle/pedestrian facilities; proximity to major identified routes to school; high-level potential cost/complexity of recommendation; and Walk Audit participant input.

This section outlines and explains high and medium priority recommendations specific to the school site. School site-specific recommendations of all priority levels can be found in the “Table of Recommendations” section. Universal recommendations that apply to all school sites are described in Appendix B. Recommendations that are focused on infrastructure treatments are denoted by “SHP,” and recommendations that suggest programmatic treatments are denoted by “SHI.”

**RECOMMENDATIONS #SHI-032 AND SHI-033: GRAYSON AVENUE ROAD REHABILITATION AND DESIGN**

**Narrative** — Despite being one of the primary access roads to the school, the current condition of Grayson Avenue feels unsafe and unwelcoming to bicyclists. There are currently no bike facilities on Grayson Avenue, which can make road-sharing for bicyclists and motorists confusing and result in unsafe road user behavior (such as close passing by motorists), particularly during peak school hours when traffic volumes are high. Additionally, the road quality of Grayson Avenue is extremely poor, with rough pavement and several potholes along the entire length of the road. The poor road condition is difficult, unpleasant, and hazardous to bike on, as large cracks and potholes can cause bicyclists to fall, and encourage dangerous driving behaviors, as motorists swerve to avoid potholes.

**IDENTIFIED BARRIERS**

- **No bike facilities** — The lack of bicycle facilities on Grayson Avenue is a significant barrier to students biking to school, as it experiences high volumes of school-related traffic from the Primary and High School.
- **Poor road quality** — The extremely poor road quality on Grayson Avenue discourages bicycling and can result in a fall hazard or unsafe driving behaviors.

**RECOMMENDATIONS**

- **SHI-033 Repave road** — We recommend that the road be repaved to provide a smooth road surface that is conducive to biking. Bike facility installation should be included as part of paving work.
- **SHI-032 Class II and Class III facilities** — We recommend that Class II bike lanes with conflict markings at parking lot entrances be installed from South Crane Avenue to the baseball field parking lot. Class III bike boulevards with sharrows, signage, and traffic-calming should be installed on the baseball field parking lot to SR 29. Transitions between bike facilities should be clearly indicated to motorists and bicyclists in advance of the transitions.

IDENTIFIED BARRIERS
• No bicycle/continuous pedestrian facilities – The lack of bicycle facilities and a continuous sidewalk along this corridor make walking and biking feel unsafe and unwelcome, especially during peak school hours when traffic volumes are high.
• Poor road quality – Poor road quality conditions on South Crane Avenue are dirt shoulders on both sides of the road adjacent to vineyards. While pedestrians can currently walk along the northbound dirt shoulder to the existing sidewalk, the lack of formal pedestrian facilities discourages pedestrians from walking along this corridor, especially during the winter season when rain makes the dirt shoulders muddy. Additionally, speeding has been reported to be a significant problem on South Crane Avenue, especially given the rural-feeling nature of the south segment along the vineyards. The combination of poor road quality, speeding, and no bike facilities makes this corridor feel unsafe and unwelcoming for bicyclists.

RECOMMENDATIONS
• SHI-038 Class I shared-use path – We recommend that a Class I shared-use path be installed on northbound South Crane Avenue from Grayson Avenue to Sulphur Springs Avenue. This can be achieved by widening the existing northbound sidewalk to Class I standards and continuing the Class I along the northbound shoulder.
• SHI-039 Repave road – We recommend that the road be repaved to provide a smooth surface conducive to biking and that Class III bike boulevard sharrows, signage, and traffic-calming be installed as part of repaving work to provide short-term bicyclist improvements pending recommendation SHI-038.

Although Walk Audit participants suggested a sidewalk along South Crane Avenue, we are not making that recommendation at this time. Given the need for both bicyclist and pedestrian facilities to meet existing uses of the corridor, the limited right of way along the northern half of the corridor, the rural nature of the southern half of the corridor, and the high potential for family use for the Primary School and Crane Park, we believe that a Class I path is more appropriate for this corridor than a sidewalk.

IDENTIFIED BARRIERS
• Low visibility – Walk Audit participants identified low pedestrian visibility at the Grayson Avenue midblock crosswalk as the top barrier for student pedestrians and bicyclists.

RECOMMENDATIONS
• Curb extensions – We recommend that curb extensions be installed at the Grayson Avenue midblock crosswalk to improve pedestrian visibility, slow traffic through the crosswalk, and re-position the Rectangular Rapid Flashing Beacon signal and signage to be more visible. Implementation of this proposal will minimally impact parking capacity, with 3 on-street parking spaces being removed.

RECOMMENDATION #SHI-036: GRAYSON AVENUE MIDBLOCK CROSSWALK INCREASED VISIBILITY
Narrative – The top barrier to walking and biking to school identified by Walk Audit participants was low pedestrian visibility at the Grayson Avenue midblock crosswalk. The midblock crosswalk on Grayson Avenue has been recently improved by the installation of Rectangular Rapid Flashing Beacons; however, pedestrian visibility at the crosswalk is still compromised due to cars parking close to the crosswalk, the signal button being far from the actual crosswalk and right next to where a car can be parked, and trees covering the signal. This crosswalk experiences high volumes of vehicle traffic from drop-off, pick-up, and student motorists along Grayson Avenue; consequently, clear pedestrian visibility is critical at this crosswalk.

The truck, parked closely to the Grayson Avenue midblock crosswalk, blocks pedestrian visibility for oncoming traffic.

RECOMMENDATION #SHI-038 AND SHI-039: SOUTH CRANE AVENUE ROAD REHABILITATION AND DESIGN
Narrative – South Crane Avenue, the second primary access road to the school and home to Crane Park, has no bike facilities, one segment of sidewalk, and poor road quality. The only sidewalk on South Crane Avenue is on the northbound side and runs from Grayson Avenue to the Crane Park south parking lot; the southbound side does not have a sidewalk nor room to install a sidewalk due to the existing residences. From the Crane Park south parking lot to Sulphur Springs Avenue are dirt shoulders on both sides of the road adjacent to vineyards. While pedestrians can currently walk along the northbound dirt shoulder to the existing sidewalk, the lack of formal pedestrian facilities discourages pedestrians from walking along this corridor, especially during the winter season when rain makes the dirt shoulders muddy. Additionally, speeding has been reported to be a significant problem on South Crane Avenue, especially given the rural-feeling nature of the south segment along the vineyards. The combination of poor road quality, speeding, and no bike facilities makes this corridor feel unsafe and unwelcoming for bicyclists.

The only sidewalk on South Crane Avenue ends midblock, forcing pedestrians to walk in the dirt.
RECOMMENDATION #SHI-044: INCREASED BIKE PARKING ON CAMPUS

Narrative – One of the solutions discussed by Walk Audit participants was improved bike parking. Currently, the school provides one bike rack with roughly 20 spaces; however, the bike rack is located next to a wall, preventing use of half of the spaces. Furthermore, having bike parking in only one location on a campus with several access points reduces convenience and visibility of biking to school as an option. In comparison, there are roughly 200 vehicle parking spaces available for student use (not including staff-designated parking) in parking lots and along Grayson Avenue. Consequently, the more abundant and convenient vehicle parking is likely to contribute to students continuing to drive to school.

IDENTIFIED BARRIERS

• Insufficient bike parking – The limited amount and locations of bike parking on campus were identified as barriers to students biking to school.

RECOMMENDATIONS

• Reposition bike rack – We recommend that the school reposition its current bike rack to allow full use.

• New bike parking – We recommend that the school add an additional bike rack near the student parking lot entrance, as that is the closest entrance point for student bicyclists arriving from Valley View Street. The school should also consider options for lighting around all bike parking and covered parking for rainy season. See Appendix D for bike parking guidelines.

The school provides ten bike parking spaces near the South Crane Avenue entrance.

RECOMMENDATION #SHI-046: GRAYSON AND SR 29 INTERSECTION IMPROVEMENTS

Narrative – Walk Audit participants identified the Grayson Avenue and SR 29 intersection as one of the top barriers to students walking and biking to school. There is only one crosswalk in the intersection, which crosses Grayson Avenue, and the nearest crosswalk across SR 29 is at Charter Oak Avenue, over a quarter-mile north of the school. Across SR 29 from the school is a bus stop for the public northbound Vine bus, and further southeast are several student destinations within walking distance, including a gym, pediatrician office, and orthodontist office. Students must cross SR 29 at an unmarked, uncontrolled location to reach any of these facilities. One Walk Audit participant reported that they walk a half-mile to Pope Street to be able to safely reach the next closest northbound Vine bus stop, rather than attempting to cross uncontrolled SR 29 traffic to access the bus stop closest to the school.

IDENTIFIED BARRIERS

• Missing crosswalk – Walk Audit participants identified the lack of a crosswalk across SR 29 as one of the top barriers to students walking, biking, or using public transit to get to school.

• Low-visibility crosswalk – The existing low-visibility crosswalk at Grayson Avenue and SR 29 was identified as a safety concern, particularly during peak school hours.

RECOMMENDATIONS

• Light-controlled high-visibility crosswalk – We recommend that a stoplight-controlled high-visibility crosswalk be installed across SR 29 at the SR 29 and Grayson Avenue intersection to provide a marked, controlled location for students to cross SR 29.

• High-visibility crosswalk – Upgrading the existing crosswalk at SR 29 and Grayson Avenue to a high-visibility pattern can supplement other proposed solutions in increasing driver yielding behavior. High-visibility crosswalks should be deemed standard on all marked crosswalks in a school zone (see Appendix B).

There are no crosswalks across SR 29 at the intersection.

St. Helena High School  |  St. Helena, CA
Walk Audit Report  |  11.22.19
RECOMMENDATIONS #SHP-007 AND SHP-016: ENCOURAGEMENT PROGRAMS

Narrative – Walk Audit participants reported that a vehicle-oriented transportation culture discourages students from walking and biking to school. In addition to infrastructure barriers, much of which exists due to this transportation culture, many students drive or are driven to school because it is the “cool” or “normal” thing to do, or because they have recently earned their driver’s license, a source of excitement and sense of independence. It is also likely that many students are unaware of the impacts their everyday transportation choices have on their health, environment, and community. An increase in encouragement programming can help raise awareness of and enthusiasm towards active transportation and complement infrastructure improvements.

IDENTIFIED BARRIERS

• Vehicle-oriented transportation culture – Walk Audit participants identified a vehicle-oriented transportation culture at the school as a barrier to students walking and biking to school.

RECOMMENDATIONS

• SHP-016 Annual encouragement events – We recommend that the school continue to engage students in annual countywide encouragement events with the goal of increasing participation. These annual events provide students who may be considering walking or biking with an opportunity to try it out in a positive schoolwide setting.

• SHP-007 Encouragement programming – We recommend that the school guide student clubs, classes, and organizations like Student Council in developing and hosting regular active transportation encouragement events. We emphasize that students should lead encouragement efforts, as peer-to-peer messaging is more effective and engaging.

• Encouragement events, such as Walk and Roll Wednesdays, VMT reduction competitions, and Cycle for Cider, can introduce students to the joys of walking and biking to school and help bring about long-term mode shift. Marin County Safe Routes to School successfully runs similar programs through their Safe Routes to School Teen Program and may be a helpful resource.

• Education outreach initiatives can help increase awareness amongst students of the various benefits of active transportation. For example, an Environmental Club can emphasize how walking and biking reduces greenhouse gases, and a Leadership Club can highlight the positive physical and mental health effects of active transportation.

RECOMMENDATION #SHP-008: CARPOOL PROGRAM

Narrative – There are also several behavior factors related to car-dependency that prevent students from walking and biking to school, in addition to the vehicle-oriented transportation culture discussed in recommendations SHP-007 and SHP-016. St. Helena High is considered a rural school with students coming from several different communities that are too far away for students to walk or bike, including Angwin/Deer Park, Pope Valley, and Lake Berryessa. The school’s principal also reported that siblings will often drive to school separately if they have different after-school activities or jobs. Walk Audit participants identified the absence of school lockers as a barrier, as this requires students to carry all of their school supplies and books to and from school every day. Students at the Walk Audit reported that students often use their cars as lockers, and that it would be difficult to walk or bike to school with all of their school materials.

IDENTIFIED BARRIERS

• Long distance from school – The school’s principal identified far commutes as a top barrier to students walking and biking to school.

• No lockers – Walk Audit participants identified the lack of lockers as a key barrier to students walking or biking to school.

• Vehicle-oriented transportation culture – Walk Audit participants identified a vehicle-oriented transportation culture as a barrier, especially given that many students in high school receive their driver’s license and are excited to drive.

RECOMMENDATIONS

• Carpool program – We recommend that the school develop a carpool system to reduce the number of cars in the school zone. The carpool system should include incentives for carpooling, such as reserved parking spaces in the Grayson Avenue student parking lot or in front of the school. It may be effective to begin a carpool program by holding special encouragement events (see SHP-007) and increasing frequency of events over time. Carpooling would address long-commutes and transporting school materials while recognizing that the vehicle-oriented transportation culture and excitement of driver’s licenses have strong roots in high school transportation habits.
IDENTIFIED BARRIERS

• No Parent Champion program – There is currently no Safe Routes to School Parent Champion program or structure at the school.

RECOMMENDATIONS

• Develop Parent Champion program – We recommend that the school develop a team of Parent Champions to support education and encouragement programs. The school should create a defined structure for the Parent Champion team so that new parents are encouraged to join every school year to ensure continuation of programs and longevity. See Appendix F for the Safe Routes Partnership handout on becoming a Parent Champion.

RECOMMENDATION #SHP-018: PARENT CHAMPIONS TEAMS

Narrative – An essential part of any Safe Routes to School Program are Parent Champion teams at local schools. Parent Champions provide valuable insight on challenges and opportunities in implementing a Safe Routes to School program that will be successful in their unique school community. The overarching role of a Parent Champion is to support and grow the Safe Routes to School program at their school, which can be done in many ways, including but not limited to planning education and encouragement events, volunteering at annual or regularly scheduled events, and advocating for changes in the built environment for a safer school zone. Development of Parent Champion teams ensures that students have consistent access to an effective Safe Routes to School program.

IDENTIFIED BARRIERS

• Narrow sidewalk – The narrow sidewalk on eastbound Grayson Avenue was identified as a barrier for students walking to school.

• Overgrown vegetation – Walk Audit participants identified overgrown vegetation on the eastbound sidewalk east of and along the performing arts building as a barrier to student pedestrians.

RECOMMENDATIONS

• Widen sidewalk – We recommend that the eastbound sidewalk along Grayson Avenue be widened to better accommodate high volumes of student pedestrians and students walking together in groups. Additionally, overgrown vegetation along and east of the performing arts building can obstruct this already narrow sidewalk. This discourages walking and can result in students walking in the road with traffic during periods of high pedestrian use, such as when school lets out.

RECOMMENDATION #SHI-035: GRAYSON AVENUE WIDENED SIDEWALK AND VEGETATION MANAGEMENT

Narrative – The eastbound sidewalk on Grayson Avenue in front of and east of the school’s main office is too narrow to accommodate high volumes of student pedestrians and students walking together in groups. Additionally, overgrown vegetation along and east of the performing arts building can obstruct this already narrow sidewalk. This discourages walking and can result in students walking in the road with traffic during periods of high pedestrian use, such as when school lets out.

IDENTIFIED BARRIERS

• Missing sidewalk – The southbound Valley View Street sidewalk ending at the Sulphur Creek bridge was identified as a safety barrier for student pedestrians.

RECOMMENDATIONS

• Install sidewalk – We recommend that the southbound Valley View Street sidewalk be completed to the intersection with Grayson Avenue.

RECOMMENDATION #SHI-041: VALLEY VIEW STREET SIDEWALK

Narrative – On Valley View Street, the southbound sidewalk ends at the bridge over Sulphur Creek, almost 500 feet short of the Grayson Avenue intersection. As there is no crosswalk where the sidewalk ends, pedestrians must cross in an unmarked location to reach the existing northbound sidewalk or walk in the bike lane on southbound side. Valley View Street is one of the only two routes to reach Grayson Avenue from central St. Helena, the other being SR 29, and is often used by all modes of transportation travelling to both the high school and SHPS to avoid highway traffic. Valley View Street is also along the most direct route to SHPS for most residences on the west side of SR 29. This leads to significant congestion during peak school hours that makes the incomplete pedestrian network a safety concern for students walking to and from school.

IDENTIFIED BARRIERS

• Missing sidewalk – The southbound Valley View Street sidewalk ending at the Sulphur Creek bridge was identified as a safety barrier for student pedestrians.

RECOMMENDATIONS

• Crosswalk – We recommend that a crosswalk be installed across Valley View Street at the intersection of Grayson Avenue and Valley View Street to provide a marked crossing location upon the completion of the sidewalk.

The Safe Routes National Partnership provides many resources for Safe Routes programs, including the handout on Parent Champions included in Appendix F.

The eastbound Grayson Ave sidewalk can feel crowded during school hours when parked cars and vegetation flank both sides.

The southbound sidewalk on Valley View Street ends on the bridge over Sulphur Creek.
IDENTIFIED BARRIERS

• Bike lane debris – Gravel and debris in the green bike lanes on Valley View Street was identified as a safety barrier for students biking to school.

• No bike facilities – The lack of bicycle facilities along Valley View Street from Birch Avenue to Spring Street was identified as a barrier for students biking to school.

RECOMMENDATIONS

• SHI-042 Street-sweeping – We recommend that the street sweeping along Valley View Street from Birch Avenue to Grayson Avenue be slowed down to ensure adequate sweeping of the bike lanes. Street-sweeping frequency of this corridor should be increased as needed to keep the bike lanes clear. The City may also consider working with the contractor site to agree upon a maintenance plan.

• SHI-043 Class III bike boulevards – We recommend the installation of Class III bike boulevards with green-backed sharrows, signage, and traffic-calming along Valley View Street from Birch Avenue to Spring Street.

IDENTIFIED BARRIERS

• No sidewalk – The missing sidewalk on northbound SR 29 south of Charter Oak Avenue was identified as a barrier to students walking to school.

RECOMMENDATIONS

• Install sidewalk – We recommend the installation of a sidewalk on northbound SR 29 from Charter Oak Avenue to Vintage Avenue to provide safe pedestrian access to central St. Helena, the closest northbound bus stop, and destinations southeast of the school.

While the missing sidewalk on southbound SR 29 from Dowdell Lane to El Bonita Avenue was also discussed as a barrier for student pedestrians, we are not making a recommendation for this barrier as it will be addressed by the planned installation of the Vine Trail shared-use path Yountville to St. Helena segment.

RECOMMENDATION #SHI-042 AND SHI-043: VALLEY VIEW STREET BIKE FACILITIES

Narrative – Although Valley View Street has green Class II bike lanes on both sides of the street north of the Grayson Avenue intersection, these bike lanes are frequently littered with significant amounts of gravel and debris from a nearby contractor site. The debris and gravel pose a significant fall risk for bicyclists and force bicyclists to either move out of the bike lane into the street or, a likelier choice for younger bicyclists attending SHPS, to bike on the sidewalk, which creates conflict risks with pedestrians and vehicles. The gravel in the bike lanes has been identified by the broader community as a strong deterrent to bicycling for transportation. Furthermore, the Class II bike lanes end just south of Birch Avenue. The northbound transition is indicated by one sharrow stencil placed immediately after the bike lane ends, and the southbound side has one sharrow at the Birch Avenue intersection. There are no other bike facilities along the rest of the Valley View Street corridor, which can lead to road user confusion and unsafe road user behavior.

The Valley View Street bike lanes are frequently obstructed with significant amounts of gravel.

RECOMMENDATION #SHI-045: SR 29 NORTHBOUND SIDEWALK

Narrative – Gaps in pedestrian infrastructure along SR 29 were also identified as barriers for student pedestrians. SR 29 provides the most direct route to the school for all residences east of SR 29 and many residences north of the school. However, there is no sidewalk on northbound SR 29 south of Charter Oak Avenue. While there is a crosswalk with Rectangular Rapid Flashing Beacons across SR 29 at Charter Oak Avenue to access the existing southbound sidewalk, the missing northbound sidewalk limits pedestrian access to the school. With the future Vine Trail alignment expected to be installed along the existing southbound sidewalk, this corridor is anticipated to experience higher volumes of pedestrians and bicyclists; consequently, the sole sidewalk on the southbound side will likely become overcrowded with high volumes of student pedestrians and bicyclists in addition to other Vine Trail use during peak school hours. East of the school on the northbound side of SR 29 is a bus stop for the northbound Vine bus, and further southeast are several student destinations within walking distance of the school, including a gym, a pediatrician, and an orthodontist. As there is no sidewalk access along SR 29 to these facilities, students must walk either in the dirt or on the railroad tracks on southbound SR 29.

IDENTIFIED BARRIERS

• No sidewalk – The missing sidewalk on northbound SR 29 south of Charter Oak Avenue was identified as a barrier to students walking to school.

RECOMMENDATIONS

• Install sidewalk – We recommend the installation of a sidewalk on northbound SR 29 from Charter Oak Avenue to Vintage Avenue to provide safe pedestrian access to central St. Helena, the closest northbound bus stop, and destinations southeast of the school.

Student pedestrians must walk along the railroad tracks to reach the nearby pediatrician and orthodontist offices.
RECOMMENDATION #SHI-057: GRAYSON AND SOUTH CRANE CURB EXTENSIONS

Narrative – The Grayson Avenue and South Crane Avenue/Valley View Street intersection experiences some of the highest traffic volumes during peak school hours, as it is adjacent to St. Helena Primary School campus and a key intersection for St. Helena High School. In addition to a significant amount of high school motorists exiting Grayson Avenue via South Crane Avenue/Valley View Street, most of the primary school’s traffic travels through the intersection, since the only available streets for primary school loading are Grayson Avenue and South Crane Avenue. Additionally, South Crane Avenue and Valley View Street are part of a “backroads route” that motorists use to avoid SR 29 traffic. As a result, this intersection is often extremely congested during pick-up and drop-off, making it difficult and uncomfortable for student pedestrians and bicyclists to navigate. Furthermore, most of the citations from St. Helena Police Department for motorist failure to stop at a stop sign in the school area were given at this intersection. Given the high volumes of traffic at this intersection, the history of poor motorist yielding behavior, and the vicinity of the intersection to two schools, it is critical that student pedestrian safety and comfort be prioritized.

RECOMMENDATIONS

• Curb extensions – We recommend that curb extensions be installed on the northeast and southeast corners of the intersection to improve pedestrian visibility, reduce pedestrian crossing distance, and improve yielding of motorists to pedestrians.

Curb extensions at Grayson and South Crane would prioritize pedestrian safety and comfort during peak school traffic hours.

IDENTIFIED BARRIERS

• High volumes of school traffic – High volumes of vehicle traffic at this intersection from both the high school and the primary school make this intersection feel unsafe and uncomfortable for student pedestrians.

• Poor motorist yielding – Motorists failing to stop at this intersection, as demonstrated by Police Department enforcement data, is a safety barrier for student pedestrians.

RECOMMENDATION #SHI-048: POPE STREET/MITCHELL DRIVE AND SR 29 INTERSECTION IMPROVEMENTS

Narrative – For students travelling to downtown St. Helena or residences northeast of the school, travelling along SR 29 is the most direct route from the school. To reach downtown or northeast residences, most students will have to navigate the Pope Street/Mitchell Drive and SR 29 intersection. Pope Street and Mitchell Drive are offset from each other, making the intersection much longer than a typical four-way intersection. This requires road users navigating the intersection to analyze and anticipate intersection interactions over a much larger area than usual, which may reduce pedestrian visibility to motorists. Additionally, motorists frequently turn right onto SR 29 from Pope Street or Mitchell Drive on a red light to avoid waiting for the traffic light to change. When doing so, motorists typically block the crosswalk in order to see oncoming traffic and direct most of their attention towards oncoming highway traffic, rather than pedestrians approaching the crosswalk, leading to a higher risk of collision.

IDENTIFIED BARRIERS

• Large, offset intersection – The unusual geometry of this intersection can make navigating this intersection complex and uncomfortable for pedestrians and bicyclists.

• Unsafe motorist behavior – Motorists turning right onto SR 29 on a red light increases the risk of collisions with pedestrians crossing the street.

RECOMMENDATIONS

• Intersection evaluation – Due to the complexity of the intersection geometry, the balance of several stakeholder needs, and Right of Way distinctions between the City and Caltrans, our recommendation for this intersection is relatively broad. We recommend that the City and Caltrans work together to evaluate this intersection for pedestrian and bicyclist improvements, with a focus on improving safety for east/west travel across the highway.

The configuration of the SR 29 and Pope Street/Mitchell Drive intersection, along with unsafe motorist right turns on red, makes pedestrian navigation of the intersection feel challenging and uncomfortable.
IDENTIFIED BARRIERS

• **Speeding** – Community members have identified speeding along Spring Street as a frequent safety hazard, making uncontrolled crosswalks like the one at Valley View Street feel unsafe and uncomfortable for pedestrians.

• **Wide curb radius** – The wide curb radius on the southeast corner of the intersection allows motorists to take fast right turns, increasing risk and potential severity of collisions with pedestrians.

RECOMMENDATIONS

• **Curb extensions** – We recommend that curb extensions be installed on all curbs where crosswalks exist at this intersection to improve pedestrian visibility, slow traffic through the intersection, and improve motorist yielding behavior.

RECOMMENDATION #SHI-040: SPRING AND VALLEY VIEW CURB EXTENSIONS

Narrative – The Spring Street and Valley View Street intersection is a key part of routes along the “backroads” between SHPS and residences north of the school and west of SR 29. For many students/families, travelling along the “backroads” may be a more direct or comfortable route to their destination than travelling along SR 29, leading them to navigate the Spring and Valley View intersection. This intersection sees high volumes of school traffic from both the primary and high school during peak school hours, as the “backroads” are also popular motorist routes. In addition to high traffic volumes, Spring Street traffic is not controlled at this intersection, and Spring Street has been identified by the community as a significant corridor for motorist speeding, both of which reduce motorist yielding behavior to pedestrians. Additionally, the wide curb radius on the southeast corner facilitates fast right turns and poor motorist yielding behavior.

IDENTIFIED BARRIERS

• **Chaotic drop-off zone** – Unsafe and unpredictable motorist behavior along Grayson Avenue was a significant safety barrier identified by Walk Audit participants.

• **No circulation policy** – The lack of a school circulation policy was one of the top barriers identified by Walk Audit participants.

RECOMMENDATIONS

• **SHP-005 Circulation policy** – We recommend that the school develop a formal circulation policy that is distributed to parents and students annually. Such a policy should instruct motorists, bicyclists, and pedestrians how to enter and exit the school zone, focusing on separating the modes of transportation, and should specify which areas are for motorist pick-up and drop-off. The policy should be designed to prioritize student pedestrian and bicyclist safety over motorist convenience.

• **SHP-006 Enforcement** – We recommend that the school increase enforcement of prohibited U-turns on Grayson Avenue, both through specific language in a circulation policy and appropriate enforcement steps.

While these recommendations will help improve order of the circulation zone, these recommendations must be implemented in tandem with recommendations for encouragement and carpool programs, which will help reduce vehicle congestion in the school zone.
ADDITIONAL CONSIDERATIONS

Improvements listed in this section are those within a half-mile radius that are either considered significant to the school area but are not located along routes to the school based on the school’s enrollment boundary or were ranked as a higher priority during the Walk Audit for another nearby school. These barriers are listed as high or medium priority due to their impact on routes to nearby schools in the neighboring areas and will be analyzed in more depth in the reports for the affected schools.

RECOMMENDATION #SHI-010: SPRING STREET CROSSWALKS

IDENTIFIED BARRIERS
• Lack of crosswalks across Spring Street

RECOMMENDATIONS
• Crosswalks at south Hudson Avenue and Crane Avenue
• Curb extensions

Relevant Reports:
• St. Helena Primary School Walk Audit Report
• St. Helena Elementary School Walk Audit Report

RECOMMENDATION #SHI-013: SPRING STREET BIKE LANES

IDENTIFIED BARRIERS
• No bicycle facilities

RECOMMENDATIONS
• Class II bike lanes

Relevant Reports:
• St. Helena Primary School Walk Audit Report
• St. Helena Elementary School Walk Audit Report

RECOMMENDATION #SHI-014: SPRING STREET SIDEWALK

IDENTIFIED BARRIERS
• Eastbound sidewalk gaps

RECOMMENDATIONS
• Fill sidewalk gaps

Relevant Reports:
• St. Helena Primary School Walk Audit Report
• St. Helena Elementary School Walk Audit Report

RECOMMENDATION #SHI-058: SPRING STREET TRAFFIC-CALMING

IDENTIFIED BARRIERS
• Speeding

RECOMMENDATIONS
• Evaluate and implement traffic-calming measures along corridor

Relevant Reports:
• St. Helena Primary School Walk Audit Report
• St. Helena Elementary School Walk Audit Report
## TABLE OF RECOMMENDATIONS

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ID #</th>
<th>BARRIER</th>
<th>RECOMMENDATION</th>
<th>COST</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHI-032</td>
<td>No bike facilities</td>
<td>Install Class II bike lanes with conflict markings at parking lot entrances from South Crane Avenue to baseball field parking lot and Class III bike boulevards with sharrows, signage, and traffic-calming from the baseball field parking lot to SR 29. Indicate transitions between bike facilities to motorists and bicyclists in advance.</td>
<td>$$</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>SHI-033</td>
<td>Poor road quality</td>
<td>Repave road</td>
<td>$$$</td>
<td>Medium</td>
</tr>
<tr>
<td>3</td>
<td>SHI-034</td>
<td>Missing westbound sidewalk (from 1376 Grayson Avenue to South Crane Avenue)</td>
<td>Install sidewalk on westbound side</td>
<td>$$</td>
<td>Low</td>
</tr>
<tr>
<td>4</td>
<td>SHI-035</td>
<td>Eastbound sidewalk narrow</td>
<td>Widen sidewalk and perform vegetation management</td>
<td>$-$</td>
<td>$-$ Medium</td>
</tr>
<tr>
<td>5</td>
<td>SHI-036</td>
<td>No bicycle facilities</td>
<td>Install curb extensions</td>
<td>$</td>
<td>High</td>
</tr>
<tr>
<td>6</td>
<td>SHI-037</td>
<td>Chaotic drop-off zone</td>
<td>Install signage prohibiting drop-off in student parking lot</td>
<td>$</td>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>ID #</th>
<th>BARRIER</th>
<th>RECOMMENDATION</th>
<th>COST</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>SHI-038</td>
<td>No bicycle facilities</td>
<td>Install Class II bike lanes</td>
<td>$$</td>
<td>High</td>
</tr>
<tr>
<td>8</td>
<td>SHI-039</td>
<td>Poor road quality</td>
<td>Install Class III bike boulevards with sharrows, signage, and traffic-calming for short-term bicyclist improvements (see SHI-038)</td>
<td>$$$</td>
<td>Medium</td>
</tr>
<tr>
<td>9</td>
<td>SHI-040</td>
<td>Southbound sidewalk ends (from 801 Valley View Street to Grayson Avenue)</td>
<td>Complete southbound sidewalk to Grayson Avenue, install crosswalk across Valley View at Grayson</td>
<td>$-$</td>
<td>$-$ Medium</td>
</tr>
<tr>
<td>10</td>
<td>SHI-041</td>
<td>Debris in bike lanes (from 925 Valley View Street to Grayson Avenue)</td>
<td>Slow down street sweeping to ensure adequate sweeping of bike lanes. Increase street-sweeping frequency as needed to keep bike lanes clear. City may consider working with the contractor site to agree upon a maintenance plan.</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>11</td>
<td>SHI-042</td>
<td>No bike facilities</td>
<td>Install green-backed Class III bike boulevards with sharrows and signage*</td>
<td>$</td>
<td>Medium</td>
</tr>
</tbody>
</table>

* = projects included in Napa Countywide Pedestrian Plan (2016) or Napa Countywide Bicycle Plan (2019)
TABLE OF RECOMMENDATIONS (CONTINUED)

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>ID #</th>
<th>RECOMMENDATION</th>
<th>LOCATION</th>
<th>FREQUENCY</th>
<th>COST</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SHP-005</td>
<td>Develop comprehensive circulation policy and distribute to parents and students</td>
<td>School zone</td>
<td>Annually</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>2</td>
<td>SHP-006</td>
<td>Increase enforcement of no U-Turn on Grayson Ave</td>
<td>School site</td>
<td>Annually and as-needed</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>3</td>
<td>SHP-007</td>
<td>Peer/Student-led encouragement programs highlighting health, environmental, social, and academic benefits of walking/biking to school</td>
<td>School site</td>
<td>Throughout school year</td>
<td>$</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>SHP-008</td>
<td>Carpool program with parking spot incentives</td>
<td>School site</td>
<td>Throughout school year</td>
<td>$</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>SHP-016</td>
<td>Continue growing participation in annual countywide encouragement events</td>
<td>School site</td>
<td>Annually</td>
<td>$</td>
<td>Medium</td>
</tr>
<tr>
<td>6</td>
<td>SHP-018</td>
<td>Develop teams of Parent Champions to support education and encouragement programs</td>
<td>School site</td>
<td>Throughout school year</td>
<td>$</td>
<td>High</td>
</tr>
</tbody>
</table>

COLLISION MAP AND DATA

**Summary Statistics**

<table>
<thead>
<tr>
<th>RADIUS</th>
<th>FATAL</th>
<th>SEVERE INJURY</th>
<th>VISIBLE INJURY</th>
<th>COMPLAINT OF PAIN</th>
<th>PEDESTRIAN</th>
<th>BICYCLE</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; .25 mi.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>.25 - 5 mi.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

**Collision List**

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>PRIMARY</th>
<th>SECONDARY</th>
<th>BIKE/PED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-04-02</td>
<td>14:30</td>
<td>Main St</td>
<td>Pope St</td>
<td>Yes/Yes</td>
</tr>
<tr>
<td>2013-08-31</td>
<td>11:03</td>
<td>Main St</td>
<td>Charter Oak Av</td>
<td>Yes/No</td>
</tr>
<tr>
<td>2016-10-13</td>
<td>15:15</td>
<td>Main St</td>
<td>Pope St</td>
<td>No/Yes</td>
</tr>
<tr>
<td>2015-05-26</td>
<td>13:49</td>
<td>RT 29</td>
<td>Charter Oak Av</td>
<td>Yes/No</td>
</tr>
<tr>
<td>2015-01-15</td>
<td>10:55</td>
<td>Church St</td>
<td>Pope St</td>
<td>Yes/No</td>
</tr>
</tbody>
</table>

Figure 8: Collision Data (Source: UC Berkeley Transportation Injury Mapping System; SRTS Collision Map Viewer)
APPENDICES

Appendix A: EMC Survey Toplines
Appendix B: Universal Recommendations
Appendix C: Quick-Build Options for Infrastructure Improvements
Appendix D: Bike Parking Guide
Appendix E: Recommendation Cost Range Matrix
Appendix F: Parent Champions Handout
Appendix G: Next Steps

FIGURES & MAPS

Figure 1 – Enrollment Data by Group (p. 8)
Figure 2 – Enrollment Data by Grade (p. 8)
Figure 3 – Bicycle Policy (p. 10)
Figure 4 – Student Parking Policy (p. 12)
Figure 5 – Encouragement and Education Data (p. 17)
Figure 6 – Citations by Type (p. 18)
Figure 7 – Speeding Citations (p. 18)
Figure 8 – Collision Data (p. 45)
Map 1 – Enrollment Boundary (p. 7)
Map 2 – School Site in City (p. 9)
Map 3 – Existing Bicycle Facilities (p. 15)
Map 4 – Existing Pedestrian Facilities (p. 16)
Map 5 – Recommendations (p. 41)
Map 6 – Collision Map (p. 45)

FOOTNOTES

APPENDIX A

EMC Survey Toplines

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
Evaluation: Research & Methodology

- **Purpose:** Gain insight into parent practices, perceptions, and attitudes around children walking and riding bicycles to and from school; explore barriers to behavior change

- **Quantitative survey of 459 parents of K-8 students in Napa County**
  - Conducted online and by telephone, offered in English and Spanish
  - Conducted March 11 – April 12, 2021
  - Participants recruited via communications from school districts and targeted online and telephone contacts
  - *Survey methods were designed to include as many participants as possible; not a random sample*

- **Qualitative follow-up research**
  - One online focus group with 7 participants in English; 4 in-depth telephone interviews in Spanish
  - Conducted May 20 – 28, 2021
  - Targeted parents who lived within two miles of their school site and would like their children to walk or bike to school
INTRO: Your opinions are important! Thank you for participating in this survey. EMC Research is conducting on behalf of the Napa County Safe Routes to School program in partnership with local school districts. You may have been contacted previously to complete this survey via telephone and we ask each individual only complete the survey once.

Your responses will remain completely confidential. Please try to answer every question even if you’re not sure. If you need to, you may skip a question.

1. Are you the parent or guardian of any children currently attending kindergarten through eighth grade in one or more of the school districts located in Napa County below? Please select the District(s) that your K-8th grade student(s) is/are currently enrolled in, check all that apply. (MULTIPLE RESPONSES ACCEPTED)
   - Calistoga Joint Unified School District
   - Howell Mountain Elementary School District
   - Napa Valley Unified School District
   - Pope Valley Union Elementary School District
   - Saint Helena Unified School District
   - Another District or school in Napa County (please specify)
   - None of the above → TERMINATE
   - (No response) → TERMINATE

2. Please indicate below what grade(s) your child/children are in. Please select all that apply. (MULTIPLE RESPONSES ACCEPTED)
   - Kindergarten
   - 1st grade
   - 2nd grade
   - 3rd grade
   - 4th grade
   - 5th grade
   - 6th grade
   - 7th grade
   - 8th grade
   - 9th through 12th grade → TERMINATE IF ONLY RESPONSE SELECTED
   - (No response) → TERMINATE
(IF MORE THAN ONE K-8 STUDENT: “Although you have multiple children in K-8, we ask that you please think about your **oldest K-8** child when answering the next questions.”)

For these next few questions, please think back to when your (child was/children were) attending school **before** the COVID-19 pandemic.

3. **On most days, what was the primary way your (K-8 child/oldest K-8 child) travelled to school?**
   - Family vehicle (only children in your family) 73
   - Carpool (children from other families) 3
   - School bus 3
   - Other public transportation 0
   - Bike 4
   - Walk 16
   - Other (scooter, skateboard, inline skates, etc.) 0
   - (No response) 0

4. **And on most days, what was the primary way your (K-8 child/oldest K-8 child) travelled from school?**
   - Family vehicle (only children in your family) 73
   - Carpool (children from other families) 3
   - School bus 3
   - Other public transportation 1
   - Bike 4
   - Walk 15
   - Other (scooter, skateboard, inline skates, etc.) 0
   - (No response) 0

5. **How long did it normally take your (K-8 child/oldest K-8 child) to get to/from school?**
   - Less than 5 minutes 18
   - 5-10 minutes 42
   - 11-15 minutes 22
   - 16-20 minutes 8
   - More than 20 minutes 9
   - (No response) 0

6. **Has your (K-8 child/oldest K-8 child) ever walked or biked to/from school?**
   - Yes 43
   - No 56
   - (No response) 0
7. **(ONLY ASKED IF Q6=1, 'Yes, has walked/biked to/from school')** In what grade did your child begin to walk or bike to/from school? (n=199)

   - Pre-school: 7
   - Kindergarten: 30
   - 1st grade: 9
   - 2nd grade: 6
   - 3rd grade: 10
   - 4th grade: 8
   - 5th grade: 9
   - 6th grade: 13
   - 7th grade: 6
   - 8th grade: 1
   - 9th through 12th grade: 1
   - (No response): 2

8. Thinking generally, what grade would you feel comfortable with a child walking or biking to/from school?

   - Pre-school: 1
   - Kindergarten: 5
   - 1st grade: 2
   - 2nd grade: 2
   - 3rd grade: 5
   - 4th grade: 14
   - 5th grade: 12
   - 6th grade: 16
   - 7th grade: 10
   - 8th grade: 7
   - 9th through 12th grade: 13
   - I would not feel comfortable at any grade: 14
   - (No response): 1
Continuing to think about times before the COVID-19 pandemic, please indicate how comfortable you were with your (K-8 child/oldest K-8 child) doing each of the following.

<table>
<thead>
<tr>
<th>SCALE:</th>
<th>Very Comfortable</th>
<th>Somewhat Comfortable</th>
<th>Not too Comfortable</th>
<th>Not at all Comfortable</th>
<th>(No Response)</th>
<th>Total Comfort.</th>
<th>Total Not Comfort.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Taking a bus to school</td>
<td>32</td>
<td>33</td>
<td>17</td>
<td>15</td>
<td>3</td>
<td>65</td>
<td>32</td>
</tr>
<tr>
<td>10. Walking to school without an adult</td>
<td>8</td>
<td>18</td>
<td>19</td>
<td>54</td>
<td>1</td>
<td>26</td>
<td>73</td>
</tr>
<tr>
<td>11. Riding a bike to school without an adult</td>
<td>7</td>
<td>17</td>
<td>22</td>
<td>53</td>
<td>2</td>
<td>23</td>
<td>75</td>
</tr>
<tr>
<td>12. Walking to school with an adult</td>
<td>66</td>
<td>19</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>85</td>
<td>14</td>
</tr>
<tr>
<td>13. Riding a bike to school with an adult</td>
<td>45</td>
<td>29</td>
<td>11</td>
<td>13</td>
<td>2</td>
<td>74</td>
<td>24</td>
</tr>
</tbody>
</table>

What would you say is the main reason you were not comfortable with your (K-8 child/oldest K-8 child) walking to school without an adult?

**VERBATIM RESPONSES CODED INTO BELOW CATEGORIES** (n=335)
- Worry for child's safety/Crime: 28
- Not old enough: 19
- Live too far away: 17
- Traffic/Busy streets: 11
- Street crossing/Intersections: 6
- Not enough sidewalks: 5
- Crossing Highway 29: 3
- Other: 8
- Don't know: 1

What would you say is the main reason you were not comfortable with your (K-8 child/oldest K-8 child) riding a bike to school without an adult?

**VERBATIM RESPONSES CODED INTO BELOW CATEGORIES** (n=324)
- Worry for child's safety/Crime: 29
- Not old enough: 18
- Traffic/Busy streets: 13
- Live too far away: 9
- Street crossing/Intersections: 5
- Crossing Highway 29: 4
- Can't ride a bike: 4
- Not enough sidewalks: 3
- No bike lanes: 3
- Other: 10
- Don't know: 1
For these next few questions, please think back to when your (child was/children were) attending school before the COVID-19 pandemic.

16INT. Please indicate whether you agree or disagree with each of the following statements.

<table>
<thead>
<tr>
<th>SCALE:</th>
<th>Strongly Agree</th>
<th>Somewhat Agree</th>
<th>Somewhat Disagree</th>
<th>Strongly Disagree</th>
<th>(No Response)</th>
<th>Total Agree</th>
<th>Total Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RANDOMIZE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>I would generally like my K-8 (child/children) to be able to walk or bike to/from school.</td>
<td>43</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>17.</td>
<td>My K-8 (child enjoys/children enjoy) walking and/or biking places.</td>
<td>57</td>
<td>31</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>18.</td>
<td>I would never let my K-8 (child/children) walk or bike to/from school.</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>28</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>19.</td>
<td>It is safe for children to walk or bike in my area.</td>
<td>13</td>
<td>45</td>
<td>22</td>
<td>20</td>
<td>-</td>
<td>58</td>
</tr>
<tr>
<td>20.</td>
<td>There are enough bike paths and sidewalks for my K-8 (child/children) to walk or bike to/from school.</td>
<td>13</td>
<td>27</td>
<td>20</td>
<td>39</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>21.</td>
<td>I am concerned about speeding or distracted drivers if/when my (child/children) walk or bike to/from school.</td>
<td>81</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>22.</td>
<td>The school is too far away for my K-8 (child/children) to walk or bike there.</td>
<td>37</td>
<td>19</td>
<td>15</td>
<td>29</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>23.</td>
<td>My K-8 (child/children) cannot bike to and from school because of their before- or after-school commitments.</td>
<td>13</td>
<td>26</td>
<td>25</td>
<td>35</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>24.</td>
<td>Walking or biking to and from school is a good way for my K-8 (child/children) to get physical exercise.</td>
<td>69</td>
<td>25</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>93</td>
</tr>
<tr>
<td>25.</td>
<td>Walking or biking to and from school is a good way for me to spend quality time with my K-8 (child/children).</td>
<td>55</td>
<td>30</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>26.</td>
<td>I would only allow my K-8 (child/children) to walk or bike to and from school if I, or another adult, can accompany them.</td>
<td>54</td>
<td>25</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>79</td>
</tr>
</tbody>
</table>

(END RANDOMIZE)
Next, you will see some things that local schools and other organizations could do that may affect how you feel about your (K-8 child/oldest K-8 child) biking to school once the COVID-19 pandemic has ended. For each, please indicate if the item would make you feel more comfortable about allowing your (K-8 child/oldest K-8 child) to walk or bike to school once the COVID-19 pandemic has ended.

<table>
<thead>
<tr>
<th>SCALE:</th>
<th>Much More Comfortable</th>
<th>Somewhat More Comfortable</th>
<th>A Little More Comfortable</th>
<th>(No Difference)</th>
<th>(Don’t Know)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27. Limit how much children have to carry in their backpacks</td>
<td>36</td>
<td>25</td>
<td>14</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>28. Provide children and parents with information and maps on safe routes to and from school</td>
<td>37</td>
<td>24</td>
<td>16</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>29. Offer free bicycle safety courses for children to learn how to ride safely on local streets</td>
<td>43</td>
<td>21</td>
<td>21</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>30. Provide opportunities for children to practice biking in a car-free environment</td>
<td>42</td>
<td>23</td>
<td>14</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>31. Offer free pedestrian safety classes for children</td>
<td>39</td>
<td>20</td>
<td>21</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>32. Provide crossing guards at major intersections</td>
<td>62</td>
<td>22</td>
<td>10</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>33. Organize groups of students to walk or bike to/from school together</td>
<td>42</td>
<td>26</td>
<td>17</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>34. Provide a local parent or adult volunteer to walk or bike with children to/from school</td>
<td>36</td>
<td>27</td>
<td>15</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>35. Add designated bike lanes to roads</td>
<td>46</td>
<td>24</td>
<td>15</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>36. Improve the condition of existing bike lanes</td>
<td>47</td>
<td>23</td>
<td>14</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>37. Add more bike paths that are separated from the road</td>
<td>62</td>
<td>17</td>
<td>11</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>38. Add more sidewalks</td>
<td>53</td>
<td>21</td>
<td>13</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>39. Fix missing or broken sidewalks</td>
<td>56</td>
<td>19</td>
<td>15</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>40. Increase the visibility and safety of crosswalks</td>
<td>61</td>
<td>20</td>
<td>11</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>41. Increase the police presence on routes that lead to schools</td>
<td>52</td>
<td>23</td>
<td>13</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>42. Reduce the speed of traffic on streets that kids use to walk or bike to school</td>
<td>53</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

(END RANDOMIZE)
43. Is there something else that could be done that would make you feel more comfortable about allowing your (K-8 child/oldest K-8 child) to walk or bike to school once the COVID-19 pandemic has ended? (VERBATIM RESPONSES CODED INTO BELOW CATEGORIES)

- Nothing/No additional comments: 42
- Add or improve bike paths/Sidewalks/Crosswalks: 15
- Increase crossing guards/Supervision/Police presence: 11
- School is too far away/Can't use active modes: 9
- Speeding concerns/Increased road law enforcement: 5
- Increase safety related to Highway 29: 2
- Already walks/bikes/etc.: 2
- Provide bikes/Equipment/Storage: 2
- Other: 10
- Don't know/Refused: 2

44. About how far does your (K-8 child/oldest K-8 child) live from school? If you’re not sure, give your best guess.

- Less than ½ mile: 14
- ½ mile up to 1 mile: 19
- 1 mile up to 2 miles: 21
- 2 miles up to 3 miles: 14
- 3 miles up to 5 miles: 15
- 5 miles or more: 16
- (No response): 1

45. Does your (K-8 child/oldest K-8 child) currently have their own working bicycle?

- Yes: 79
- No: 21
- (No response): -

46. Did you ride a bicycle when you were your K-8 (child’s/children’s) age?

- Yes: 78
- No: 21
- (No response): 0

These last questions are for statistical purposes only. Your responses will remain completely confidential.

47. Do you identify as...

- Male: 14
- Female: 83
- Non-binary: -
- Another gender identity: -
- Prefer not to respond: 3
48. **What year were you born? (YEARS CODED INTO CATEGORIES)**

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-29 (2003-1992)</td>
<td>5</td>
</tr>
<tr>
<td>40-49 (1972-1981)</td>
<td>45</td>
</tr>
<tr>
<td>50-64 (1957-1971)</td>
<td>12</td>
</tr>
<tr>
<td>65 or older (1956 or earlier)</td>
<td>1</td>
</tr>
<tr>
<td>Prefer not to respond</td>
<td>1</td>
</tr>
</tbody>
</table>

49. **Do you consider yourself to be...**

<table>
<thead>
<tr>
<th>Identity</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic or Latino</td>
<td>38</td>
</tr>
<tr>
<td>White or Caucasian</td>
<td>41</td>
</tr>
<tr>
<td>African American or Black</td>
<td>1</td>
</tr>
<tr>
<td>Asian or Pacific Islander</td>
<td>7</td>
</tr>
<tr>
<td>Something else</td>
<td>3</td>
</tr>
<tr>
<td>Prefer not to respond</td>
<td>10</td>
</tr>
</tbody>
</table>

50. **Do you...**

<table>
<thead>
<tr>
<th>Activity</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Own or are buying the home or apartment where you live</td>
<td>55</td>
</tr>
<tr>
<td>Rent or lease</td>
<td>35</td>
</tr>
<tr>
<td>Prefer not to respond</td>
<td>10</td>
</tr>
</tbody>
</table>

**THANK YOU!**
APPENDIX B

Universal Recommendations

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
The Napa County Safe Routes to School (SRTS) Walk Audit Report Universal Recommendations apply to all public schools in Napa County, which reflects the schools served under the SRTS program. Universal recommendations are meant to supplement site-specific recommendations and address common barriers in the bicycle/pedestrian network around schools in a concise and consistent manner.

**Universal Recommendation 1: High-Visibility School Zone Crosswalks**

Federal Highway Administration data\(^1\) indicates that high-visibility crosswalk striping improves the visibility of crosswalks compared to standard parallel lines and can improve yielding behavior by drivers\(^2\). Additionally, crosswalk visibility enhancements, which include but are not limited to high-visibility crosswalks, can reduce crashes by 23-48%\(^1\).

- **Recommendation:** High-visibility (continental or ladder pattern) crosswalks should be implemented at the following locations:
  - Utilizing the California Vehicle Code (CVC) §21368 requirements for designating crosswalks as “school zone” crosswalks (painted yellow), all school zone crosswalks;
  - And, all marked crosswalks at an intersection with a designated collector or arterial roadway within 1320 feet (0.25 miles) of a school (following the same measuring method as CVC §21368)

This recommendation applies to existing and future crosswalks. It does not provide guidance for new crosswalk warrants; it is primarily focused on the improvement of crosswalks within the roughly ¼ mile radius examined through the Walk Audit process.

**Universal Recommendation 2: Intersection Daylighting**

Daylighting is the practice of removing visual barriers, including parked vehicles, within a certain distance of a crosswalk or intersection to greatly improve visibility for pedestrians, bicyclists, and motorists. The National Association of City Transportation Officials recommends removing parking within 20-25 feet of an intersection. Daylighting can be accomplished through permanent infrastructure, such as concrete curb extensions, or more cost-effective materials, such as paint and bollards.

---

• Recommendation: Daylighting strategies should be implemented at the following intersections:
  o Those that are in the school zone as defined by CVC §21368;
  o Those that are intersections with a designated collector or arterial roadway within 2640 feet (0.5 miles) of a school (following the same measuring method as CVC §21368).

Universal Recommendation 3: Sidewalk Width Adjacent to School Campus

A barrier frequently identified during Walk Audits throughout the county was that sidewalks immediately adjacent to the school were too narrow for the high volumes of pedestrians generated during school arrival and dismissal times. Most of these sidewalks were roughly 4 feet wide, including space for utility and signage poles. While these sidewalks may meet specific municipal standards, they do not accommodate high volumes of school-related pedestrians and can deter or prevent students from walking to school if they travel with their families, in groups, or use a mobility assistance device. This is especially so when sidewalks are obstructed by utility poles, signal boxes, and other objects.

• Recommendation: All sidewalks that lead to a school campus entrance should be a minimum of 6 feet wide within at least 250 feet of the school entrance; if a school has only one entrance, the sidewalk leading to that entrance should be a minimum of 8 feet wide within 250 feet of that entrance.

Universal Recommendation 4: Class III Bike Boulevard Traffic-Calming

Class III bicycle boulevards are on-street bicycle facilities that have traditionally been marked by signage and share-the-road stencils (“sharrows”) painted in the vehicle travel lane. Class III facilities do not provide any separation between bicyclists and motorists and instead indicate to road users that bicyclists and motorists must share the road. Such facilities are intended to be installed on low-speed (25 mph or less*) and low-volume (<3,000 vehicles/day*) roadways; however, the current practice of implementing only signage and sharrows for Class III routes frequently does not meet the comfort and safety perception needs of the “Interested but Concerned” user profile of bicyclists, which includes an estimate of 51%-56% of the population and is typically the profile assumed for most school-age children. To create a lower stress bicycle network, the Federal Highway Administration describes improving bicycle boulevards by “slowing motor vehicle speeds and implementing other speed management measures.”

• Recommendation: All Class III bicycle boulevards should be marked with sharrows and signage and must be treated with traffic-calming strategies to enforce the desired speed limit and prevent motorist speeding. Class III bicycle boulevards adjacent to school campuses or along roadways that facilitate
motorist speeding (long, straight, and/or minimal traffic control) should be prioritized for traffic-calming treatments.

* Metrics established by the Federal Highway Association in their 2019 Bikeway Selection Guide.

**Universal Recommendation 5: Curb Ramps (Americans with Disabilities Act)**

Some of the early Walk Audit reports specifically call out intersections or other pedestrian access points where curb ramps compliant with the Americans with Disabilities Act were missing, which creates a significant connectivity barrier for pedestrians who use mobility assistance devices. However, following these reports, the Napa County Safe Routes to School team recognized that many intersections and pedestrian access points were missing these curb ramps and that individually identifying each missing curb ramp would be redundant, particularly given data from the Napa Countywide Pedestrian Plan (2016). Consequently, though some early reports do mention lack of accessible curb ramps, a universal recommendation was created to address this important pedestrian barrier while avoiding redundancy in reports.

- **Recommendation:** In alignment with the Americans with Disabilities Act, when implementing recommendations made in Napa County Safe Routes to School reports that impact the curb at intersections, pedestrian crossings, or other pedestrian access points, curb ramps that are compliant with the Americans with Disabilities Act should be installed.
APPENDIX C

Quick Build Brochure

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
Delivering Safer Streets in Weeks or Months, Instead of Years

How to Meet Public Demand for Safe Bikeway Networks—Affordably, Quickly, and Inclusively

WHY QUICK-BUILD? WHY NOW?

Biking is up in many communities in California, including those that started with low rates of bicycling, as people seek out healthy and safe transportation and recreation. Californians are discovering they can be healthier and happier simply by getting out on two wheels.

Meanwhile, agency budgets are down. Plans to spend millions on infrastructure may no longer be realistic. More than ever, the public demands that transportation projects are equitable and responsive to the needs of neglected communities.

Quick-build is a method of building bike and pedestrian safety improvements—protected bike lanes, pedestrian crossings, slow streets, parklets, and more—now, within your budget. In challenging times, quick-build projects are crucial to building trust in the government’s ability to deliver public benefit. And quick-build infrastructure can engage the public better than ever, and be more inclusive and equitable than traditional infrastructure.

CASE STUDY

Adeline Street in Berkeley got protected bike lanes 20 years ahead of schedule, when Bike East Bay worked closely with the city to incorporate planned lanes into the repaving schedule, saving time and money by simply adding bike infrastructure to an existing project, one funded through a local infrastructure bond measure. The City of Berkeley garnered extensive public input on the Adeline Corridor, making this a great example of quick-build speeding up existing bike infrastructure planning, bringing bike lanes to Berkeley in 2019 instead of 2039.

“We as transportation experts need to be thinking strategically about whether or not we need to spend three years talking about doing something important, or three weeks to just try something.”

— Warren Logan
Transportation Policy Director of Mobility and Interagency Relations at Oakland Mayor’s Office

Photo credit: Alta Planning + Design
WHAT IS QUICK-BUILD?

The Basics

• Quick-build projects use materials that can be installed quickly and at low cost. Build projects from posts, planters, and stripes of paint, not new pavement or curb alignments.

• **Quick-build projects are installed on a trial basis.** Temporary installations allow for adjusting or removing elements in response to public feedback. Successful projects may become permanent, exactly as installed, or upgraded with more durable materials.

• **Quick-build should incorporate rigorous community engagement.** A project on the ground can serve much more effectively than a PowerPoint or rendering for trying something out and allowing community residents to respond. Gather feedback and input, and change designs accordingly.

Materials

From paint, traffic cones, and A-boards to concrete curb barriers, planters, and temporary raised crosswalks, a wide variety of materials work well for creating quick-build projects. The full Quick-Build Toolkit provides thorough, detailed descriptions of materials that can make for an effective and inexpensive project to meet your community’s needs.

CASE STUDY

In August of 2020, the City of San Luis Obispo converted one of the three motor vehicle lanes of downtown Higuera Street into a buffered bike lane, as part of Open SLO, the city’s pilot program to expand the use of public spaces (with parklets and bike/ped spaces) during the COVID-19 pandemic. The project was installed with paint, took less than a week to install, and cost a mere $15K instead of the more than $150K it would have taken to put in a traditional bike lane by sealing and restriping the whole street as the city would normally do.

Photo credit: Bike SLO County
WHO?

Your Quick-Build Project Team

Team leader. Quick-build projects need a “chief” (usually city staff) tasked with project facilitation, keeping the momentum going, establishing lines of communication, and accepting and evaluating feedback.

Community leaders. Because evaluation and adjustment are essential for successful quick builds, make sure community leaders are on board from the beginning. Look to businesses, residential associations, places of worship, and nearby schools. Bring in bike/ped advocacy organizations and other CBOs, including those based in disadvantaged communities and led by people of color.

Department liaisons. Your project may impact transit, street sweeping, parking enforcement, maintenance, waste management and recycling, and emergency response. Involve other agencies as necessary to ensure you don’t forget a critical aspect.

Elected Officials. They have the power to marshal funding for quick-build projects. They will hear from constituents, so communication channels between the project team and electeds must be open for effective project evaluation.

Communications. Ideally, include a dedicated communications person on your team. Because this is a new method, and people are used to years of discussion, publicize quick-build’s temporary nature. Talk about the project’s intended benefits, and listen to feedback about the actual impacts.

Community Engagement

Community engagement is essential and also very effective, because it’s easy to engage people in providing feedback on real-world solutions that they can see and use. Here are the keys:

• Start engaging with the community before you install the project so that residents’ opinions are included from the get-go.
• Be inclusive in your outreach, including perspectives from disadvantaged communities and people of color.
• Emphasize the project’s temporary nature, and the ability to change the project after it’s installed.
• Implement effective feedback mechanisms during the project, making sure to plan and budget for project adjustments in response to input.

CASE STUDY

The El Cajon Boulevard Business Improvement Association ("The Boulevard") got city councilmembers and the mayor on board to fund a pilot bus and bike lane along a 3-mile stretch of San Diego’s El Cajon Boulevard. The Boulevard staff brought in diverse stakeholders and built on longstanding relationships to push the city to dedicate a lane for El Cajon Boulevard’s new bus rapid transit line, and got bikes included on this Vision Zero corridor. The entire three-mile project, which launched in January 2020, cost $100K, funded by San Diego’s general fund.

Photo credit: Holly Raines
WHERE?

Which Projects are Best for Quick-Build?

Some projects are better than others for the quick-build method.

• **Look to existing plans.** Your community’s current active transportation plan already identifies key improvements and priorities. Most such plans will take decades to complete with traditional methods and funding. Quick-build can take those plans to reality much sooner.

• **Fill gaps in the bikeway network, especially now when more people are bicycling.** Look to improve intersections that are dangerous to navigate, short sections of crosstown routes that use busy streets, or long sections of streets that could become “slow streets” to connect neighborhoods.

• **Put disadvantaged communities first.** If your plan doesn’t already incorporate an equity analysis to set priorities, this is your chance. Look at a model plan like Oakland’s "Let's Bike Oakland" bicycle plan which incorporates a framework of equity and a focus on improving well-being for the city’s most vulnerable groups.

If a project is funded and on schedule to be built within a year or two, turn your attention to projects that will take years without quick build. Projects that require expensive modifications—new traffic signals, bridges, reconfigured curbs—are not good quick-build candidates.

Funding for Quick-Build

POTENTIAL FUNDING SOURCES IN CALIFORNIA

Available funding for quick-build projects varies a lot from one municipality to the next. But here are a few ideas.

• Public works departments’ essential repaving and repair projects are great opportunities to put in quick-build projects at low cost.

• Local and regional funds such as general fund, sales tax revenue, and Air Quality Management District funds can be used for quick-build projects.

• Tack on costs to another publicly-funded transportation project, or even a private project. For example, a development project that is required to repave and stripe new bike lanes might install a protected bike lane using quick-build materials instead.

• In 2020, the Active Transportation Program piloted a special quick-turnaround funding pot for quick-build projects, with an earlier (summer) deadline. Keep an eye on the ATP to see if they continue to offer this funding in future years. CalBike will be pushing them to do so.

• PeopleForBikes has a small grant program for infrastructure projects.

• AARP’s Community Challenge grant could fund a quick-build project.

Photo credit: Alta Planning + Design

This resource was prepared in partnership with Alta Planning + Design. For more information see our complete Quick-Build Guide.
APPENDIX D

Bike Parking Guidance

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
ESSENTIALS OF BIKE PARKING
Selecting and installing bicycle parking that works
INTRODUCTION

Among the necessary supports for bicycle transportation, bike parking stands out for being both vital and easy. Still, it requires some attention to get it right. Bike parking may go unused if it’s not more appealing to users than the nearest sign post. A minor mistake in installation can make a quality rack unusable. The variety of bicycle sizes, shapes, and attachments continues to increase, and good bike parking should accommodate all types.

The Association of Pedestrian and Bicycle Professionals (APBP) prepared this guide for people planning to purchase or install bike parking fixtures on a limited scale. It is a brief overview of APBP’s comprehensive Bicycle Parking Guidelines handbook, available at www.apbp.org.

This guide divides bike parking into short-term and long-term installations. These two kinds of parking serve different needs, and the starting point for most bike parking projects is recognizing whether the installation should serve short-term users, long-term users, or both. If users will typically be parking for two hours or longer, they are likely to value security and shelter above the convenience and ease that should characterize short-term parking.
SITE PLANNING

Location
Short-term bike parking should be visible from and close to the entrance it serves—50’ or less is a good benchmark. Weather-protected parking makes bicycle transportation more viable for daily and year-round use, and it can reduce the motivation for users to bring wet bicycles into buildings. Area lighting is important for any location likely to see use outside of daylight hours.

Security
All racks must be sturdy and well-anchored, but location determines the security of short-term parking as much as any other factor. Users seek out parking that is visible to the public, and they particularly value racks that can be seen from within the destination. Areas with high incidence of bicycle theft may justify specific security features such as specialty racks, tamper-proof mounting techniques, or active surveillance.

Quantity
Many jurisdictions have ordinances governing bike parking quantity. APBP’s full Bicycle Parking Guidelines offers complete recommendations for the amount and type of parking required in various contexts. In the absence of requirements, it’s okay to start small—but bear in mind that perceived demand may be lower than the demand that develops once quality parking appears.

BIKE CORRALS

Some cities with limited sidewalk space and strong bicycle activity place bike parking in on-street “bike corrals” located in the street area adjacent to the curb. Bike corrals can sometimes make use of on-street areas that are unsuitable for auto parking. When replacing a single auto parking space, a corral can generally fit 8 to 12 bicycles. APBP’s full Bicycle Parking Guidelines provides details about designing and siting bike corrals. 📝 apbp.org
LONG-TERM PARKING

Users of long-term parking generally place high value on security and weather protection. Long-term parking is designed to meet the needs of employees, residents, public transit users, and others with similar needs. These users typically park either at home or at a routine destination such as a workplace. They often leave their bicycles unmonitored for a period of several hours or longer, so they require security and weather protection that let them park without unreasonable concern for loss or damage.

Long-term parking can take a variety of forms, including a room within a residential building or workplace, a secure enclosure within a parking garage, or a cluster of bike lockers at a transit center. Some long-term parking is open to the public—such as a staffed secure enclosure at a transit hub—and some of it is on private property with access limited to employees, residents, or other defined user groups.

SITE PLANNING

Location
Appropriate locations for long-term parking vary with context. Long-term parking users are typically willing to trade a degree of convenience for weather protection and increased security. Long-term installations emphasize physical security above public visibility. Signage may be needed for first-time users.

Security
Security is paramount for quality long-term parking. Access to parked bicycles can be limited individually (as with lockers) or in groups (as with locked bike rooms or other secure enclosures). Options for access control include user-supplied locks, keys, smart cards, and other technologies.

Quantity
Refer to local ordinances or the comprehensive APBP Bicycle Parking Guidelines to determine the amount and type of parking required for various contexts.

SPECIAL CONSIDERATIONS FOR LONG-TERM PARKING

In many ways, short-term and long-term parking function similarly and are served by the same guidelines. Some exceptions are noted below.

Density
The competition of uses for high-security and sheltered locations creates particular pressure on long-term parking to fit more bicycles in less space. When parking needs cannot be met with standard racks and spacing recommended in this guide, consider rack systems designed to increase parking density. See the high-density racks table on page 7. Note that increasing density without careful attention to user needs can create parking that excludes people because of age, ability, or bicycle type. This may result in people parking bicycles in other less desirable places or choosing not to bike at all.

Bicycle design variety
Long-term parking facilities should anticipate the presence of a variety of bicycles and accessories, including—depending on context—recumbents, trailers, children’s bikes, long-tails, and others. To accommodate trailers and long bikes, a portion of the racks should be on the ground and should have an additional 36” of in-line clearance.

Performance criteria
The bike rack criteria in the next section apply to racks used in any installation, regardless of its purpose. Long-term installations often use lockers and group enclosures not discussed in this guide. Such equipment raises additional considerations that are discussed in detail in APBP’s full Bicycle Parking Guidelines. 🌐 apbp.org
INSTALLATION

Selecting an appropriate installation surface and technique is key to creating bicycle parking that remains secure and attractive over time.

INSTALLATION SURFACE

A sturdy concrete pad is an ideal surface for installing bicycle parking. Other surfaces often encountered include asphalt, pavers, and soft surfaces such as earth or mulch. These surfaces can accommodate in-ground mounting or freestanding bike racks such as inverted-U racks mounted to rails. See APBP’s Bicycle Parking Guidelines for details. apbp.org

INSTALLATION FASTENERS

When installing racks on existing concrete, consider the location and select appropriate fasteners. Drill any holes at least three inches from concrete edges or joints. Some locations benefit from security fasteners such as concrete spikes or tamper-resistant nuts on wedge anchors. Asphalt is too soft to hold wedge and spike anchors designed for use in concrete. Installing bike parking on asphalt typically requires freestanding racks and anchor techniques specific to asphalt.

FASTENERS

<table>
<thead>
<tr>
<th>FASTENER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCRETE SPIKE</td>
<td>Installs quickly in concrete with a hammer. Tamper-resistant. Removal may damage concrete and/or rack.</td>
</tr>
<tr>
<td>CONCRETE WEDGE ANCHOR</td>
<td>Allows for rack removal as needed. Not tamper-resistant, but can accommodate security nuts (below).</td>
</tr>
</tbody>
</table>

INSTALLATION TECHNIQUES

When installing racks on existing concrete, choose those with a surface-mount flange and install with a hammer drill according to the specifications of the mounting hardware selected. When pouring a new concrete pad, consider bike parking fixtures designed to be embedded in the concrete. Because replacing or modifying an embedded rack is complicated and costly, this installation technique requires particular attention to location, spacing, rack quantity, and material.
# PERFORMANCE CRITERIA FOR BIKE PARKING RACKS

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>DETAILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports bike upright without putting stress on wheels</td>
<td>The rack should provide two points of contact with the frame—at least 6” apart horizontally. Or, if a rack cradles a bicycle’s wheel, it must also support the frame securely at one point or more. The rack’s high point should be at least 32”.</td>
</tr>
<tr>
<td>Accommodates a variety of bicycles and attachments</td>
<td>The racks recommended on page 6 (“racks for all applications”) serve nearly all common bike styles and attachments—if installed with proper clearances (see placement section). Avoid designs and spacing that restrict the length, height, or width of bicycles, attachments, or wheels.</td>
</tr>
<tr>
<td>Allows locking of frame and at least one wheel with a U-lock</td>
<td>A closed loop of the rack should allow a single U-lock to capture one wheel and a closed section of the bike frame. Rack tubes with a cross section larger than 2” can complicate the use of smaller U-locks.</td>
</tr>
<tr>
<td>Provides security and longevity features appropriate for the intended location</td>
<td>Steel and stainless steel are common and appropriate materials for most general-use racks. Use tamper-resistant mounting hardware in vulnerable locations. Rack finish must be appropriate to the location (see materials and coatings section).</td>
</tr>
<tr>
<td>Rack use is intuitive</td>
<td>First-time users should recognize the rack as bicycle parking and should be able to use it as intended without the need for written instructions.</td>
</tr>
</tbody>
</table>
RACK STYLES

The majority of manufactured bike racks fall into one of the categories on pages 6-8. Within a given style, there is wide variation among specific racks, resulting in inconsistent usability and durability. APBP recommends testing a rack before committing broadly to it.

RACKS FOR ALL APPLICATIONS

INVERTED U
also called staple, loop

Common style appropriate for many uses; two points of ground contact. Can be installed in series on rails to create a free-standing parking area in variable quantities. Available in many variations.

POST & RING

Common style appropriate for many uses; one point of ground contact. Compared to inverted-U racks, these are less prone to unintended perpendicular parking. Products exist for converting unused parking meter posts.

WHEELWELL-SECURE

Includes an element that cradles one wheel. Design and performance vary by manufacturer; typically contains bikes well, which is desirable for long-term parking and in large-scale installations (e.g., campus); accommodates fewer bicycle types and attachments than the two styles above.
This guide analyzes the most common styles of bike racks, but it is not exhaustive. Use the performance criteria on page 5 to evaluate rack styles not mentioned. Custom and artistic racks can contribute to site identity and appearance, but take care that such racks don’t emphasize appearance over function or durability.

**HIGH-DENSITY RACKS**

These rack styles do not meet all performance criteria but may be appropriate in certain constrained situations.

High-density rack systems can maximize the use of limited parking space, but they don’t work for all users or bicycles. If installing these racks, reserve additional parking that accommodates bicycles with both wheels on the ground for users who are not able to lift a bicycle or operate a two-tier rack, or for bikes that are not compatible with two-tier or vertical racks.

**STAGGERED WHEELWELL-SECURE**

Variation of the wheelwell-secure rack designed to stagger handlebars vertically or horizontally to increase parking density. Reduces usability and limits kinds of bikes accommodated, but contains bikes well and aids in fitting more parking in constrained spaces.

**VERTICAL**

Typically used for high-density indoor parking. Not accessible to all users or all bikes, but can be used in combination with on-ground parking to increase overall parking density. Creates safety concerns not inherent to on-ground parking.

**TWO-TIER**

Typically used for high-density indoor parking. Performance varies widely. Models for public use include lift assist for upper-tier parking. Recommend testing before purchasing. Creates safety concerns not inherent to on-ground parking, and requires maintenance for moving parts.
RACKS TO AVOID

Because of performance concerns, APBP recommends selecting other racks instead of these.

WAVE
also called undulating or serpentine

Not intuitive or user-friendly; real-world use of this style often falls short of expectations; supports bike frame at only one location when used as intended.

SCHOOLYARD
also called comb, grid

Does not allow locking of frame and can lead to wheel damage. Inappropriate for most public uses, but useful for temporary attended bike storage at events and in locations with no theft concerns. Sometimes preferred by recreational riders, who may travel without locks and tend to monitor their bikes while parked.

COATHANGER

This style has a top bar that limits the types of bikes it can accommodate.

WHEELWELL

Racks that cradle bicycles with only a wheelwell do not provide suitable security, pose a tripping hazard, and can lead to wheel damage.

BOLLARD

This style typically does not appropriately support a bike’s frame at two separate locations.

SPIRAL

Despite possible aesthetic appeal, spiral racks have functional downsides related to access, real-world use, and the need to lift a wheel to park.

SWING ARM SECURED

These racks are intended to capture a bike’s frame and both wheels with a pivoting arm. In practice, they accommodate only limited bike types and have moving parts that create unneeded complications.
**RACK MATERIALS & COATINGS**

Most bicycle parking racks are made of carbon steel or stainless steel. Carbon steel requires a surface coating to resist rust while appropriate grades of stainless steel need no coating. Not all materials and coatings with the same name perform equally. Square tubing provides a security advantage as round tubing can be cut quietly with a hand-held pipe cutter. Before purchasing racks, talk to suppliers about your particular conditions and choose a material and coating that suit your needs. The following are common choices, depending on local considerations and preferences.

<table>
<thead>
<tr>
<th>RACK MATERIAL – COATING</th>
<th>RELATIVE PURCHASE COST</th>
<th>DURABILITY</th>
<th>CAUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon steel - galvanized</td>
<td>Usually lowest</td>
<td>Highly durable and low-maintenance; touch-up, if required, is easy and blends seamlessly</td>
<td>Utilitarian appearance; can be slightly rough to the touch</td>
</tr>
<tr>
<td>Carbon steel - powder coat* (TGIC or similar)</td>
<td>Generally marginally higher than galvanized</td>
<td>Poor durability</td>
<td>Requires ongoing maintenance; generally not durable enough for long service exposed to weather; not durable enough for large-scale public installations</td>
</tr>
<tr>
<td>Carbon steel - thermoplastic</td>
<td>Intermediate</td>
<td>Good durability</td>
<td>Appearance degrades over time with scratches and wear; not as durable as galvanized or stainless</td>
</tr>
<tr>
<td>Stainless steel - no coating needed, but may be machined for appearance</td>
<td>Highest</td>
<td>Low-maintenance and highest durability; most resistant to cutting</td>
<td>Can be a target for theft because of salvage value; maintaining appearance can be difficult in some locations</td>
</tr>
</tbody>
</table>

*When applied to carbon steel, TGIC powder coat should be applied over a zinc-rich primer or galvanization to prevent the spread of rust beneath the surface or at nicks in the finish.*
The following minimum spacing requirements apply to some common installations of fixtures like inverted-U or post-and-ring racks that park one bicycle roughly centered on each side of the rack. Recommended clearances are given first, with minimums in parentheses where appropriate. In areas with tight clearances, consider wheelwell-secure racks (page 6), which can be placed closer to walls and constrain the bicycle footprint more reliably than inverted-U and post-and-ring racks. The footprint of a typical bicycle is approximately 6’ x 2’. Cargo bikes and bikes with trailers can extend to 10’ or longer.

Sidewalk racks adjacent to on-street auto parking should be placed between parking stalls to avoid conflicts with opening car doors.

When installing sidewalk racks, maintain the pedestrian through zone. Racks should be placed in line with existing sidewalk obstructions to maintain a clear line of travel for all sidewalk users.
APPENDIX E

Recommendation
Cost Range Estimates

Safe Routes to School Walk Audit Report
and Active Transportation Action Plan
Appendix E: Recommendation Cost Range Estimates

Cost estimate was one of many factors considered when prioritizing recommendations for Napa County Safe Routes to School Walk Audit reports. Recommendations in which a high cost estimate would considerably delay implementation of the recommendation may have been given a lower priority level in order to prioritize recommendations that are lower cost and therefore more likely to be installed more quickly. Cost was considered on a high-level scale; real cost ranges of recommendations may differ from cost range estimates included in Walk Audit reports.

Cost range estimates for Safe Routes to School Walk Audit recommendations are as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>&lt; $25,000</td>
</tr>
<tr>
<td>$$</td>
<td>Between $25,000 and $250,000</td>
</tr>
<tr>
<td>$$$</td>
<td>$250,000 to $1 million</td>
</tr>
<tr>
<td>$$$$</td>
<td>&gt; $1 million</td>
</tr>
</tbody>
</table>
APPENDIX F

Parent Champions
Handout

Safe Routes to School Walk Audit Report
and Active Transportation Action Plan
How to be a Parent Champion for Safe Routes to School

Schools, cities, parents, and students are embracing the Safe Routes to School movement and establishing tens of thousands of Safe Routes to School programs throughout the United States. This document describes how parents and families can get involved in Safe Routes to School, though data collection, school and neighborhood improvements, policy change, and programs to enable and encourage more walking and bicycling.

Education, Encouragement, and Enforcement

Education, encouragement, and enforcement are additional strategies for implementing Safe Routes to School in your community. Often they require few resources and can be started right away. Discuss with other families, school staff, and neighbors which ideas below could be good options for your school. Ensure education, encouragement, and enforcement methods are inclusive of all members in your school. Consider language and cultural barriers when producing materials.

Organize a Walk or Bike to School Day Event

Encouragement activities such as Walk to School or Bike to School Day can show families how easy and fun it is to walk or bike. Start campaigns for these national events and get teachers, staff members, students, and parents committed to participating. Register your event online at walkandbike.org. For tips on walk or bike to school day read our Bike to School Day blog.

Organize a Walking School Bus or Bike Train

Walking school buses or bike trains are safe and fun ways for children to get physical activity as they travel to and from school with adult supervision. Each “bus” or “train” walks or bikes along a set route with one or more adults leading it, picking children up at designated stops along a predetermined route and using active travel to get them to school. The process is reversed in the afternoons on the way home from school. It is that easy! For information about starting a walking school bus or bike train refer to Step In to a Walking School Bus Program and Get Rolling with a Bike Train Program.
Bicycle and Pedestrian Curricula in the Classroom

To ensure that children receive appropriate safety training, work with your school to provide education about walking and bicycling safely. This type of training helps to address parent and school administrator concerns about traffic safety. For more information about why this training is important and what to look for in a training program refer to Bicycle and Pedestrian Safety Curriculum for Safe Routes to School.

Remote Drop Off

Many schools that struggle with including students that live too far to walk or bicycle to school have created remote drop off programs. Programs work with schools and school district transportation departments (including school buses) to designate student drop off locations at a short distance from the school. This helps to reduce traffic congestion around the school and encourages students to get additional exercise. Read tips on remote drop off.

Create Partnerships with Law Enforcement

Creating partnerships between law enforcement, schools, and community organizations can help bolster Safe Routes to School programs. Working with your local police department to increase patrols during school commute hours or implement measures to decrease speeding are two examples of partnerships with law enforcement. Work with families and law enforcement to make sure that a police presence will not end up targeting students of color.

Addressing School Bus Cuts

When school districts face financial challenges, a common target for cuts is the school transportation system -- cutting back bus routes and stops as well as widening the walk zone around a school. However, reducing busing without also addressing student safety risks often leads to more traffic congestion, poorer air quality, increased safety risks, and higher family transportation costs as more parents drive children to school. If your school district is talking about transportation cuts, work with district and school staff members to ensure that a Safe Routes to School program is being implemented simultaneously.

Understanding the Problem and Opportunity

Understand the challenges preventing many students from safely walking or biking to school. Using the National Center for Safe Routes to School’s parent survey you can begin gathering information on issues specific to your school. Survey parents every two to three years. Work with your school to understand how students are getting to and from school by conducting student travel tallies at the beginning and end of each school year.

Conduct a walk audit by surveying walking conditions around the school. Look for sidewalks, crosswalks, school zone signs, parent behavior during arrival and dismissal to better understand the challenges families and students face. Refer to Let’s Go For A Walk: A Toolkit for Planning and Conducting a Walk Audit for more information and templates for conducting a walk audit. Walk audits are not the only method for establishing baseline data. Interviewing school staff, students, and parents is also a great way to discover your school's strengths and weaknesses when it comes to opportunities for walking and bicycling to and from school. When interviewing school staff members, students, and parents, make sure educational and marketing materials are accessible, and consider all languages and cultures in your school.

Historically, low income communities and communities of color have streets and schools with fewer sidewalks, crosswalks, bike lanes, bike racks, and less lighting than communities whose residents have higher incomes. These communities shoulder the burden of increased rates of death and injury because of missing or unsafe places to walk and bike. Many things contribute to street safety, but the presence or lack of safe places to walk and bike plays a major role. For more information on disparities in street infrastructure refer to “At the Intersection of Active Transportation and Equity”.

School and Neighborhood Changes

While changing the way streets and sidewalks function in your community may seem intimidating, it is quite possible. Cities and counties make decisions about traffic speeds, crosswalks, signage and other neighborhood design issues. School campus design can also support walking and bicycling. By talking with the principal, city traffic engineer, city councilperson, or other officials, families can change the environment in and around the school and throughout the neighborhood. You can help improve the school and neighborhood environment with the actions listed below.

Getting Bike Racks at the School

Students won’t bicycle to school if there isn’t a place to safely store their bicycles. Creating space and securing funding or a donation for school bike racks assures the safety of bikes while children are in class. Work with the school and school district to make sure bike racks are secure, in a visible place, and easily accessible from school entrances. Asking the school district or city to provide needed bike racks is a great place to start.
Maintenance

Regular maintenance of streets, sidewalks, trees, and bushes means the difference between a pleasant walk or bicycle ride to school and a harrowing experience tiptoeing over shards of glass and dodging overhanging bushes that push you into the street. The city often decides when to trim bushes and sweep streets, and what streets and paths to clear first when it snows. A walk audit with city officials can make maintenance a higher priority. Work with city staff or start by talking with an elected official, to address maintenance issues—they are often easy to solve. Consider organizing a cleanup party that brings families, students, and the community together to make sidewalks and paths clear and beautiful.

Painting Crosswalks and Signage

Encourage communication between your city and school. Discuss problems that students encounter walking and bicycling to school with the city engineer and/or elected officials and help gather information for needed city projects. Share walk audit findings with city officials. Remember that the key to successful change is to share specific problems, such as busy intersections, pedestrian lights that don’t allow enough time, or missing crosswalks, instead of telling the city ‘the solution.’ Ask about organizing temporary or low cost improvements such as a community crosswalk or intersection painting at your school.

Safe Routes to School Grant Application

If your walk audit shows that the area around the school needs extensive improvements, work with your local decision makers at the city and school to apply for funding to initiate these projects. There may be local, regional, state, or private funding available. A well thought out proposal that includes strong partnerships in the community will lead to a powerful funding application that can improve the streets around your school.

Policy Changes

The idea of changing government and school policies may seem overwhelming, but it doesn’t have to be. Schools, cities, and counties all make policies that govern use of agency resources including funding. With parents and families advocating for changes, you can help these agencies support opportunities for children to walk and bicycle to school and in daily life. The following are policy changes that can improve walking and bicycling to schools. We suggest that you pick one or two policies that interest you, and work together with other concerned families to encourage changes.

Reversing a No Walk/Bike Policy

Does your school prohibit walking or bicycling to school? If so, you can change this! There are many examples across the country of schools that have changed their policies after parents have asked them to be reviewed or reconsidered. For more information, see our Safe Routes to School Local Policy Guide and Safe Routes to School District Policy Workbook.

Integrating Safe Routes to School in Wellness Policies

Federal law requires all school districts that participate in the federal school meal program to adopt wellness policies that focus on nutrition and physical activity. Many schools have policies that focus on nutrition, but they need more ways to increase physical activity. Getting more students to walk and bike through this simple change is an excellent way to support your Safe Routes to School program. Find out if your school has a wellness policy, how it can be amended, and get Safe Routes to School included! This will help later with getting additional programs and policies initiated. For more information reference the Safe Routes to School District Policy Workbook.

School Siting and Closure Policies

When school districts grow, budgets contract, or the student population changes, there are often discussions around building or closing schools. Local districts have wide discretion regarding where they locate schools; where a school is built or which school is closed are critical components in enabling or preventing students from walking or bicycling to school. Find out more about school siting and closures here. These policy initiatives provide preliminary ideas for how parents and community advocates can start implementing policies that support Safe Routes to School, changes to the built environment, and increased physical activity. Children can also get involved as advocates for better walking and bicycling conditions.

Complete Streets

The design of streets is essential to the livability of the area around the school. Getting your city to pass a complete streets policy can lead to roads being designed and maintained for all modes of travel. By ensuring that streets are accessible to people walking, biking, driving, and taking transit, you can maximize the use of the street while creating a healthy place for everyone to move about. For more information, read our guide Complete Streets: Making Roads Safe and Accessible for All Users.

Be a champion for Safe Routes to School today! Find a strategy you’re interested in and help make walking and biking to and around your school safer.
APPENDIX G

Next Steps

Safe Routes to School Walk Audit Report and Active Transportation Action Plan
From Recommendations to Action: Next Steps

Napa County Bicycle Coalition (NCBC) has concluded the final task under the Napa County Safe Routes to School Program in coordination with the Napa County Office of Education, funded under the One Bay Area Grant and the Active Transportation Program.

Evaluation of active transportation barriers at school sites are complete and final reports of recommendations for each school in Napa County will be published in the spring of 2022. The NCBC team is already planning the next phase of Safe Routes to School that will help bring these recommendations into reality. Supported by a “Quick Strike” grant through the Metropolitan Transportation Commission (MTC), NCBC will continue its SRTS work over the course of this next year.

**NCBC SRTS Quick Strike Program Elements (2022-2023):**

- **Engage parents in advocating for implementing the recommendations.** Hold safety summits at various school sites that raise awareness of the recommendations and provide a forum for parents to discuss strategies and to plan next steps. Work with schools and other stakeholders to implement recommendations. Build a Safe Routes to School (SRTS) Advisory Committee, including “parent champions” from key school sites, to help guide the SRTS program into the next phase of growth and engagement and to help ensure the long-term viability of the program, providing a structure both for stakeholder feedback and input, as well as for increased local investment in future program activities.
  - **Action Steps:**
    - Hold up to seven safety summits at various school sites
    - Form SRTS advisory committee

- **Provide education and encouragement programming** at elementary and middle schools that includes bike rodeos throughout the year, Bike Month (and Bike to School Day) in the spring, and Walk and Roll to School Day in the fall. This programming aims to increase the number of students who walk or bike to school and to ensure that, as barriers are removed and facilities are improved, youth have the skills and confidence to take advantage of improvements.
  - **Action Steps:**
    - Hold up to 14 Bike Rodeos at elementary and middle schools
    - Provide outreach and support for Walk and Roll to School Day and Bike Month activities at up to seven school sites
    - Support local Agricultural & Hospitality Industry workers with bicycle safety education

- **Conduct community-based safety education programming** that reaches identified populations of concern. Through bilingual Family Biking Workshops, community rides in partnership with other local organizations, and safety education outreach to agricultural
and hospitality workers, NCBC will tailor our programming to help engage the full spectrum of our community.

- **Action Steps:**
  - Conduct up to nine bilingual Family Biking Workshops
  - Conduct up to six community events and rides

- **Secure future funding for the Safe Routes to School Partnership (SRTS).** We believe that every student should be able to safely walk or ride a bike to school. The SRTS program provides vital safety education, encouragement, and community engagement programs to thousands of students annually while advocating for facilities that make active transportation safe and accessible. SRTS will be a key force in helping to make the Walk Audit recommendations a reality. Napa County is one of the only counties in the region that lacks dedicated, long-term funding for these programs and efforts, and without that support implementing the recommendations will face more barriers.

- **Action Steps:**
  - Apply for competitive and discretionary grant funding
  - Seek funding support from jurisdictions
  - Seek funding support from community health
  - Provide annual program reports to stakeholders